Показать сообщение отдельно
Старый 26.01.2016, 15:24   #15
Tomara
Новичок
 
Регистрация: 26.06.2014
Сообщений: 7
Сказал спасибо: 1
Поблагодарили 16 раз(а) в 5 сообщениях
По умолчанию

31. Методика и алгоритм расчета центрально сжатых железобетонных элементов

Для надежного проектирования железобетонных внецентренно сжатых стоек необходимо располагать методом расчета, позволяющим определять напряженно-деформированное состояние конструкций о учетом физической и геометрической нелинейности. Этот метод расчета целесообразно строить на основе общих физических законов, к которым могут, быть отнесены зависимости, связывающие напряжения и деформации бетона и арматуры.
В последние годы рядом исследователей [1-3] предпринимались попытки построения такого метода расчета. Среди них отметим исследования [2], в которых полные (с нисходящими ветвями) диаграммы деформирования бетона учитывались в явном виде. Расчет ведется итерационно-шаговым методом, на каждой ступени расчета задается деформация крайнего сжатого волокна бетона. Такой подход позволяет определить не только несущую способность, но и развитие деформаций в процессе нагружения. Предельное состояние конструкции достигается при выполнении условия dM/dB = 0 (или dM/d  =о)
Наряду с безусловными достоинствами большинства разработанных методик, позволяющими оценивать напряженное состояние железобетонного элемента на всех стадиях нагружения, необходимо отметить и ряд недостатков, вызванных принятыми допущениями. Это, прежде всего, неучет нисходящей ветви диаграммы растяжения бетона, принятие гипотезы плоских сечений для средних деформаций бетона и арматуры, неучет влияния различных, режимов, нагружений на изменение зависимости между напряжениями и деформациями бетона при сжатии и растяжении. Кроме того большинство отмеченных методик были созданы применительно к расчету изгибаемых и внецентренно сжатых железобетонных элементов не высокой гибкости. В гибких железобетонных стойках, несущая способность которых находится в прямой зависимости от величины деформаций, принятие отмеченных выше допущений может значительно отразиться на результатах расчета.
В этой связи в РГСУ был разработан метод расчета предназначенный для гибких железобетонных стоек. Основным преимуществом этого метода по сравнению с известными является учет фактических эпюр напряжений бетона, сжатой и растянутой зон каждого поперечного сечения элемента в зависимости от его расположения относительно сечения с трещиной. Использование этого метода расчета позволяет на каждой ступени загружения кривизны, а следовательно, и прогибы определять с учетом фактической депланации каждого поперечного сечения элемента в отличие от других методик, в которых применялись усредняющие коэффициенты в и s. Точное определение прогибов влечет за собой и более правильное установление предельной несущей способности гибких железобетонных элементов.
Эффективность предложенного метода проверена применительно к стойкам различной гибкости при однократном кратковременном нагружении.
Следует отметить, что для надежного использования любой методики расчета учитывающей фактические диаграммы деформирования бетона, необходимо располагать аналитическими зависимостями между напряжениями и деформациями бетона при центральном нагружении бетонных призм. Правомерность использования диаграмм "в - в" центрально нагруженных призм при расчете внецентренно сжатых колонн доказана [3]. В настоящее время предложено немало аналитических зависимостей, связывающих напряжения и деформации бетона при центральном сжатии и растяжении. Наиболее точной, простой является зависимость ЕКБ-ФИП [3]. При нагружениях эксцентрично приложенной нагрузкой в каждом волокне бетона возникает свое напряженно-деформированное состояние характеризуемое переменным по высоте сечения уровнем напряжения: вi = вi/Rв или вti =вti/Rвt. Степень изменения диаграммы "в(вt) - в(вt)", вызванная повторными нагружениями, существенно зависит от уровня в(вt). Т.е. в каждом волокне бетона железобетонного элемента диаграмма будет изменяться (трансформироваться) по-разному. В бетоне железобетонных конструкций в общем случае может реализовываться один из шести случаев напряженно-деформированного состояния, вызванного предварительными и последующими эксплуатационными силовыми воздействиями: п.сжатие - сжатие; п.сжатие - растяжение; ц. растяжение - сжатие; п.растяжение - растяжение; п.(сжатие-растяжение) - сжатие; п.(сжатие-растяжение) - растяжение.
Для учета этого явления необходимо корректировать параметры диаграммы деформирования бетона RB и BR при RBt и Bt, умножая их на соответствующие коэффициенты γRв и γB или γRвt и γBt . Методика учета влияния таких нагружений на диаграмму "в(вt) - в(вt)" подробно изложена [ 3 ].
Разработанный метод расчета железобетонных стоек на нагружения различного вида основывается на следующих предпосылках:
- напряжения в(вt) и деформации в(вt) каждого отдельного волокна бетона на высоте сжатой XB или растянутой XBt зон изменяются по закону деформирования трансформированных, диаграмм "в(вt) -в(вt)". При этом напряжения могут изменяться от, нуля до γRв • Rв (γRвt • Rвt ) и деформации от нуля до значений больших γεвR • εвR (γεвRt • εвRt)
- в качестве исходной принимается диаграмма деформирования бетона, рекомендованная ЕКБ-ФИП, которая принимается справедливой для сжатых и для растянутых волокон;
- сечения при деформировании остаются плоскими, т.е. принимается справедливой гипотеза плоских сечений;
- нейтральные оси эпюр деформаций и напряжений совпадают.
Расчеты показывают высокую достоверность предложенного метода.

32. Особенности расчета каменных стен

Расчетное сопротивление каменной кладки для поверочных расчетов определяется, исходя из марки кирпича и марки раствора (при выполнении расчета по проектным данным) или из условной марки кирпича и условной марки раствора (при выполнении поверочных расчетов по результатам испытаний) по СНиП с учетом коэффициентов условий работы.
Для промежуточных значений условных марок кирпича и раствора, отличающихся от значений параметрического ряда, расчетные значения сопротивления каменной кладки можно определять линейной интерполяцией.
Условная марка сплошных бетонных и природных камней определяется испытанием на сжатие не менее пяти отобранных из кладки образцов.
Допускается определять прочность кирпича при сжатии на образцах-цилиндрах диаметром около 50 мм, высверленных из кирпича кладки, или ультразвуковым методом в соответствии с ГОСТ.
Условная марка раствора кладки устанавливается по результатам испытания на сжатие не менее пяти образцов-кубов с ребрами 30–40 мм, изготовленных из двух пластинок раствора, отобранных из горизонтальных швов кладки и склеенных гипсовым тестом в соответствии с требованиями норм. Условная марка может быть определена как средний результат испытаний пяти кубов, умноженный на коэффициент 0,7.
Техническое состояние конструкций зданий и сооружений оценивают: по несущей способности (предельные состояния первой группы) с учетом износа, наличия трещин, агрессивности среды и т. п.; по пригодности к нормальной эксплуатации (предельные состояния второй группы), исключая возможность появления или раскрытия трещин и перемещений (прогибов, поворотов, перекосов), промерзания, водо- и воздухопроницаемости, звукопроводности и т. п.
При этом необходимо учитывать факторы, снижающие несущую способность конструкций; наличие трещин и дефектов; уменьшение расчетного сечения конструкций в результате механических повреждений, агрессивных и динамических воздействий, размораживания, пожара, эрозии и коррозии, устройства штраб и отверстий; эксцентриситеты, связанные с отклонением стен, столбов, колонн и перегородок от вертикали и выпучиванием из плоскости; нарушение конструктивной связи между стенами, колоннами и перекрытиями при образовании трещин, разрывах связей; смещение балок, перемычек, плит на опорах.
Усиление каменных конструкций необходимо, если в сечениях усилия от расчетных нагрузок превышают расчетную несущую способность конструкции.

33. Особенности расчета бетонных перемычек зданий.
С помощью перемычек в стенах образуются проемы для дверей, окон или арок. На перемычки из ячеистого бетона, как и на все другие, ложится вес стены над ними, поэтому они должны иметь достаточно высокую прочность на излом. Эту прочность им обеспечивает армирование и заполнение. Заполнение в такой конструкции работает на сжатие, а арматура – на растяжение. Так как ячеистый бетон менее прочен, чем обычный (тяжелый), то и применяются такие строительные элементы в несущих стенах только в зданиях до пяти этажей. В простенках такие перемычки могут применяться без ограничений.
Основные преимущества, которыми обладают перемычки с наполнением из ячеистого бетона и которые обуславливают их использование:
• меньший вес, который позволяет монтировать их вручную и снижает общий вес конструкции здания;
• слабая теплопроводность, которая позволяет устранять мостики холода в кирпичных зданиях и получать стены с однородными тепловыми характеристиками в зданиях из газосиликатных блоков.


34. Методы оценки раскрытия трещин бетона

При обследовании строительных конструкций наиболее ответственным этапом является изучение трещин, выявление причин их возникновения и динамики развития. Они могут быть вызваны самыми разными причинами и иметь различные последствия.
По степени опасности для несущих и ограждающих конструкций трещины можно разделить на три группы.
1. Трещины неопасные, ухудшающие только качество лицевой поверхности.
2. Опасные трещины, вызывающие значительное ослабление сечений, развитие которых продолжается с неослабевающей интенсивностью.
3. Трещины промежуточной группы, которые ухудшают эксплуатационные свойства, снижают надежность и долговечность конструкций, однако еще не способствуют полному их разрушению.
В металлических конструкциях появление трещин в большинстве случаев определяется явлениями усталостного характера, что часто наблюдается в подкрановых балках и других конструкциях, подверженных переменным динамическим нагрузкам.
Возникновение трещин в железобетонных или каменных конструкциях определяется локальными перенапряжениями, увлажнением бетона и расклинивающим действием льда в порах материала, коррозией арматуры и действием многих труднопрогнозируемых факторов.
Следует различать трещины, появление которых вызвано напряжениями, проявившимися в железобетонных конструкциях в процессе изготовления, транспортировки и монтажа, и трещины, обусловленные эксплуатационными нагрузками и воздействием окружающей среды.
В железобетонных конструкциях к трещинам, появившимся в доэксплуатационный период, относятся: усадочные трещины, вызванные быстрым высыханием поверхностного слоя бетона и сокращением объема, а также трещины от набухания бетона; трещины, вызванные неравномерным охлаждением бетона; трещины, вызванные большим гидратационным нагревом при твердении бетона в массивных конструкциях; трещины технологического происхождения, возникшие в сборных железобетонных элементах в процессе изготовления, транспортировки и монтажа.
Трещины, появившиеся в эксплуатационный период, разделяются на следующие виды: трещины, возникшие в результате температурных деформаций из-за нарушений требований устройства температурных швов или неправильности расчета статически неопределимой системы на температурные воздействия; трещины, вызванные неравномерностью осадок грунтов основания; трещины, обусловленные силовыми воздействиями, превышающими способность железобетонных элементов воспринимать растягивающие напряжения.
При наличии трещин на несущих конструкциях зданий и сооружений необходимо организовать систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций конструкций и степень их опасности для дальнейшей эксплуатации.
Наблюдение за развитием трещин проводится по графику, который в каждом отдельном случае составляется в зависимости от конкретных условий.
Трещины выявляются путем осмотра поверхностей конструкций, а также выборочного снятия с конструкций защитных или отделочных покрытий.
Следует определить положение, форму, направление, распространение по длине, ширину раскрытия, глубину, а также установить, продолжается или прекратилось их развитие.
На каждой трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины.
При наблюдениях за развитием трещин по длине концы трещин во время каждого осмотра фиксируются поперечными штрихами, нанесенными краской или острым инструментом на поверхности конструкции. Рядом с каждым штрихом проставляют дату осмотра.
Расположение трещин схематично наносят на чертежи общего вида развертки стен здания, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.
Трещины и маяки в соответствии с графиком наблюдения периодически осматриваются, и по результатам осмотра составляется акт, в котором указываются: дата осмотра, чертеж с расположением трещин и маяков, сведения о состоянии трещин и маяков, сведения об отсутствии или появлении новых трещин и установка на них маяков.
Ширину раскрытия трещин обычно определяют с помощью микроскопа МПБ-2 с ценой деления 0,02 мм, пределом измерения 6,5 мм и микроскопа МИР-2 с пределами измерений от 0,015 до 0,6 мм, а также лупы с масштабным делением (лупы Бринеля) (рис. 5.5) или других приборов и инструментов, обеспечивающих точность измерений не ниже 0,1 мм.
Глубину трещин устанавливают, применяя иглы и проволочные щупы, а также при помощи ультразвуковых приборов типа УКБ-1М, бетон-3М, УК-10П и др.
При применении ультразвукового метода глубина трещины устанавливается по изменению времени прохождения импульсов как при сквозном прозвучивании, так и методом продольного профилирования при условии, что плоскость трещинообразования перпендикулярна линии прозвучивания. Глубина трещины определяется из соотношений:
где h - глубина трещины (см. рис. 2); V - скорость распространения ультразвука на участке без трещин, мк/с; ta, te - время прохождения ультразвука на участке без трещины и с трещиной, с; а - база измерения для обоих участков, см.
Важным средством в оценке деформации и развития трещин являются маяки: они позволяют установить качественную картину деформации и их величину.
Маяк представляет собой пластинку длиной 200-250 мм, шириной 40-50 мм, высотой 6-10 м, из гипса или цементно-песчаного раствора, наложенную поперек трещины, или две стеклянные или металлические пластинки, с закрепленным одним концом каждая по разные стороны трещины, или рычажную систему. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствуют о развитии деформаций.

35. Классификация опалубки для монолитного строительства

Выполнение монолитных строительных работ характеризуется большими темпами, необходимыми для выполнения монтажных процессов. Именно это и определяет требования, которым должна соответствовать опалубка для монолитного домостроения.
В связи с тем, что монолитные работы отличаются интенсификацией, зачастую связаны с выполнением различных процессов на высоте, при этом возводимые несущие конструкции имеют значительный вес, опалубка для монолитных работ должна обеспечивать:
• Безопасность выполнения технологических процессов.
• Высокую несущую способность конструкции и ее механическую прочность, в том числе и на изгиб
• Съемная опалубка для монолитного строительства должна оснащаться соединительными элементами, обеспечивающими ее быстрое перемещение при продвижении фронта работ.
• Иметь незначительный вес для возможности применения в высотных условиях.
• Иметь высокую оборачиваемость
Современные виды подобного оснащения, в своем большинстве, соответствуют данным требованиям, но, в то же время, цена опалубки для монолитного строительства достаточно велика, ведь она представляет достаточно сложную инженерную систему.

Классификация опалубки для монолитного строительства
Классификация опалубки очень обширна, так как ее можно распределить по целому ряду признаков.

Сфера применения
В зависимости от назначения опалубка может быть универсальной, предназначенной для обеспечения различных строительных конструкций, или иметь только единственную сферу применения:
• Стеновая опалубка применяется для возведения стен и конструкций фундаментов.

Опалубка для перекрытий


• Опалубка перекрытий — наиболее сложная система, применяется для устройства монолитных межэтажных перекрытий различного объема.
• Опалубка колонн обладает способностью смонтировать каркас любой конфигурации, чаще всего имеет форму цилиндра



36. Старение бетона

В процессе эксплуатации бетонная поверхность подвергается различным климатическим и механическим воздействиям. При этом следует различать, вызывают ли внешние воздействия изменения химические или физические.
Признаком старения бетона, значительным, но снаружи невидимым, является медленно протекающий процесс карбонатизации свободной гидроокиси кальция Са(ОН)2. При этом Са(ОН)2 реагирует с углекислотой воздуха и переходит в нерастворимый карбонат кальция СаСО3. Так как гидроокись кальция сильная щелочь, ее можно легко выявить при помощи индикатора, например фенолфталеина. Степень карбонатизации определяется на свежем изломе бетона. При хорошем качестве бетона процесс карбонатизации за год проникает в глубину изделия менее чем на 1 мм. В пористом цементном камне или при неплотном поверхностном слое бетона процесс карбонатизации протекает быстрее и уже через несколько лет может достичь арматурных стержней, в этом случае теряющих свою химическую и антикоррозионную защиту. Этот процесс следует особенно учитывать, если предусматривается окраска бетона. Молодой или в возрасте только нескольких недель бетон разлагает связующие вещества органического происхождения определенных красителей благодаря своей активной щелочной реакции.
От характера процесса карбонатизации зависят плотность и прочность бетонной поверхности, а также ее цвет.



37. Технология устройства каменных сводов
Арочные перемычки, а также арки и своды выкладывают в такой же последовательности, как и клинчатые перемычки. Швы между рядами должны быть перпендикулярны к кривой линии, образующей нижнюю поверхность арки, и наружной поверхности кладки. Швам кладки придают клинчатую форму с уширением наверху и сужением внизу. Такое расположение рядов кладки и разделяющих их постелей соответствует первому правилу разрезки кладки, так как в арках и сводах усилие от нагрузки меняет свое направление, действуя по касательной к кривой арке. Постели рядов оказываются перпендикулярными к направлению давлений (рис. 47).

Рис. 47. Кладка перемычек: а – клинчатой; б – лучковой: 1 – направление опорной плоскости; 2 – замковый кирпич.

Рис. 47. Кладка перемычек (продолжение): в – арочной; г – швы кладки: 3 – шнур; 4 – шаблон-угольник.


Кладку арочных перемычек ведут по опалубке соответствующей формы в такой же последовательности, как и кладку клинчатых перемычек. Направление радиальных швов и правильность укладки каждого ряда проверяют по шнуру, закрепленному в центре арки. Шнуром и шаблоном-угольником, одна из сторон которого имеет очертание, соответствующее кривизне арки, определяют и проверяют положение каждого ряда кладки.
Конструкция опалубки для кладки сводов и арок должна быть такой, чтобы она могла обеспечить равномерное опускание ее при распалубливании. Для этого под кружалами ставят клинья, при постепенном ослаблении которых опалубка опускается. Сроки выдерживания арочных и клинчатых перемычек на опалубке в зависимости от температуры наружного воздуха в летних условиях и марки раствора могут быть от 5 до 20 сут, а перемычек рядовых – от 5 до 24 сут.


38. Защита подвальных помещений и фундаментов от подземных вод.
Выработанные способы защиты конструкций и подземных помещений от вредного воздействия подземных вод и сырости можно разделить на три основные группы: борьба с проникновением атмосферных осадков в грунт путём отвода дождевых и талых вод с площадки; устройство дренажей для его осушения; применение различных видов ГИ.
Отвод дождевых и талых вод с площадки производится для защиты грунтов от переувлажнения. Для организации отвода осуществляется вертикальная планировка территории застройки, заключающаяся в придании местности определённых уклонов. Устраивается система водоотливных канав, а на застроенной местности устраивают закрытые лотки и ливневую канализацию. С этой же целью вдоль наружных стен зданий устраивают отмостку с уклоном в сторону от сооружения.
Дренаж – системк дрен и фильтров, предназначенная для перехвата, сбора и отвода от сооружения подземных вод. Дальше вода самотёком поступают к водоотводящим коллекторам или водосборникам насосных станций. Траншейные дренажи (открытые канавы и траншеи) применяют для осушения территорий, предназначенных под застройку. Закрытый беструбный дренаж представляет собой траншею, заполненную фильтрующим материалом (гравий, щебень) от дна до уровня подземных вод. Трубчатый дренаж наиболее распространён и представляет собой дырчатую трубу с обсыпкой песчано-гравийной смесью или с фильтровым покрытием из волокнистого материала. Дренажные галереи применяют в наиболее ответственных случаях, для особо надёжной долговременной эксплуатации. Там устраивают бетонный лоток или водоотводную канавку, высоту галереи принимают не менее 1.3 м, а уклон в сторону выпуска не менее 0.003. Пластовый дренаж - слой фильтрующего материала, уложенный под всем сооружением. Вода отводится трубчатыми дренами. Пристенный дренаж – вертикальный слой из проницаемого материала, устраивается с наружной стороны фундамента и заглубляется ниже его подошвы.
ГИ предназначается для обеспечения водонепроницаемости сооружений (антифильтрационная ГИ), а также защиты от коррозии и разрушения материалов фундаментов и подземных конструкций при физической или химической агрессивности подземных вод (акнтикор ГИ). Наиболее распространенные средства – жирный цементный раствор, рулонная изоляция – гидроизол, стеклорубероид, металлаизол, толь -, обмазка битумом

39. Методы улучшения свойств оснований при строительстве на тех или иных видах структурно-неустойчивых грунтов.

К структурно-неустойчивым грунтам относятся грунты, обладающие в природном состоянии структурными связями, которые при определенных воздействиях снижают свою прочность или полностью разрушаются. Эти воздействия могут заключаться в существенном изменении температуры, влажности, приложении динамических усилий. К структурно-неустойчивым относятся мерзлые и вечномерзлые грунты, лессовые просадочные грунты, засоленные и заторфованные грунты, рыхлые пески, набухающие грунты и др. Неучет специфических свойств этих грунтов может привести к нарушению устойчивости зданий и сооружений, к чрезмерным их деформациям.
Просадочные свойства можно устранить следующим образом:
1. Уплотнением грунтов тяжелыми трамбовками. При трамбовании механически ломаются структурные связи в грунте. Для грунтов I типа трамбованием удается полностью устранить просадочные свойства в верхнем слое толщиной до 1-1,5 м. Для грунтов II типа по просадочности необходимо еще и глубинное уплотнение. Недостатком данного метода является возникновение сильных колебаний, поэтому вблизи уже построенных зданий его следует использовать с осторожностью.
2. Устройство фундаментов в вытрамбованных котлованах. По сути, это то же трамбование, но только трамбовками определенной формы с одновременным устройством тела фундамента. Эффект уплотнения ограничен, поэтому иногда устраивают двухслойное основние, втрамбовывая в нижний слой щебень.
3. Предварительное замачивание в сочетании с подводными взрывами мелкими зарядами. При этом поверхность грунта оседает и требуется выполнить досыпку, уплотнив ее трамбованием и укаткой. При замачивании следует определить необходимое количество воды так, чтобы влажность грунта была выше начальной просадочной влажности.
4. Прорезка просадочного грунта сваями. Это метод является косвенным, так как он напрямую не устраняет просадочные свойства грунтов. Применяются забивные призматические или пирамидальные сваи. Неполная прорезка просадочных грунтов применяется только при I типе грунтов по просадочности. При просадочных грунтах II типа необходимо учитывать отрицательное трение, действующее на сваи.
5. Химическое закрепление и термообжиг просадочных грунтов, но они являются наиболее дорогими способами.

40. Обеспечение устойчивости откосов котлованов

При возведении фундаментов в открытом котловане проектом производства работ предусматривается выполнение следующих мероприятий: отрывка котлована, крепление стен котлована, его осушение, подготовка основания, устройство фундаментов и обратная засыпка пазух с надлежащим уплотнением.
Проектирование котлованов начинают с горизонтальной и вертикальной привязки котлована к местности с указанием на планах и разрезах основных осей, размеров, абсолютных отметок дна и всех заглублений. В проекте предусматриваются мероприятия, направленные на предотвращение затопления поверхностными и подтопления подземными водами, нарушения природной структуры грунтов при производстве работ, возможного промерзания в зимний период и нарушения сохранности рядом расположенных зданий и сооружений.
Надежность и устойчивость, а также значения осадки естественных оснований во многом зависят от способа производства работ по разработке котлованов и устройства оснований и фундаментов.
Важно устраивать фундаменты в минимальные сроки, особенно в зимний или дождливый период года, тем самым снижая затраты на осушение котлована и сохраняя природную структуру грунтов.
Работы нулевого цикла и устройство фундаментов разрешается начинать только после приемки котлована и грунтов основания, что оформляется специальным актом.
Сохранение природной структурыоснованйя обеспечивают с помощью защитного слоя грунта, который удаляют из котлована только непосредственно перед возведением фундамента. Толщина этого слоя указывается в проекте.
Отвод атмосферных осадков из котлована осуществляется с помощью открытого водоотлива.
Для обеспечения нормального ведения работ по устройству фундаментов, возводимых в открытых котлованах, необходимо исключить и возможность обрушения откосов. Устойчивость стенок котлована обеспечивается с помощью придания им соответствующих уклонов или использования специальных креплений.
Выбор величины откосов и способа крепления зависит от глубины котлована, особенностей напластования и свойств отдельных слоев грунта, уровня подземных вод, способа производства работ и расстояния до существующих зданий и сооружений.
1. Назначение крутизны откосов котлованов и траншей. Некоторые виды грунтов, особенно связные, способны держать вертикальный откос в Пределах некоторой глубины. Поэтому стенки котлована иногда разрешается оставлять вертикальными. При вертикальных стенках котлованов возведение фундаментов и засыпку пазух следует производить вслед за выемкой грунта, так как случайное увлажнение грунта дождевыми водами может существенно уменьшить сцепление и привести к обрушению вертикального откоса.
При более глубоких котлованах (в пределах 3…5 м) в грунтах естественной влажности стенки допускается выполнять без крепления, но с уклоном (рис. 8.1). Данные о необходимой крутизне откосов для различных видов грунтов в зависимости от глубины котлована приведены в табл. 8.1. При глубине котлованов свыше 5 м для грунтов естественной влажности крутизна откосов назначается расчетом.

Рис. 8.1. Схема к вычислению крутизны откосов котлована

Добавлено через 38 секунд
41. Область применения свайных фундаментов.

Применение фундаментов мелкого заложения при глубоко расположенном несущем слое грунта затруднительно. Это связано с тем, что с увеличением глубины котлована значительно усложняются конструкции крепления его стен и резко возрастает его стоимость. При глубине котлованов 5—8 м применение фундаментов мелкого заложения становится нерациональным, а часто и технически неосуществимым. В этих случаях наиболее целесообразны как правило, фундаменты из свай и оболочек. Сваипредставляют собой погруженные в грунт готовые или изготовленные в пробуренных скважинах несущие элементы, которые передают нагрузку от сооружения на слои грунта с достаточно высокой несущей способностью. Железобетонные цилиндрические полые сваи диаметром более 0,8 м называют сваями-оболочками (оболочками). Полые сван и оболочки небольшого диаметра после их погружения в грунт обычно заполняют бетонной смесью, в результате чего их поперечные сечения становятся сплошными.
Свайные фундаменты состоят из свай или оболочек и объединяющей их поверху плиты или балки, называемой ростверком. Ростверк воспринимает нагрузку от расположенного над ним сооружения и распределяет ее между сваями.
В практике строительства мостов отработано и применяется значительное число разнообразных конструкций свайных фундаментов. Однако, несмотря на это разнообразие, их можно классифицировать по двум основным признакам: 1) по расположению ростверка, объединяющего верхнюю часть свай, относительно поверхности грунта; 2) по типу применяемых несущих элементов.
Различают свайные фундаменты с высоким и низким ростверком. Подошва высокого ростверка возвышается над поверхностью грунта (рис. 8.1, а), а низкий ростверк заглублен в грунт (рис. 8.1, б).
В фундаментах опор мостов с высоким ростверком можно дополнительно выделить конструкции, в которых ростверк одновременно является подферменной плитой, непосредственно воспринимающей нагрузку от пролетных строений. Такие конструкции называют безростверковыми опорами. Поскольку их чаще всего применяют для эстакад, то иногда сами опоры называют опорами эстакадного типа.

Рис. 8.1. Свайные фундаменты с ростверком а - высоким; б - низким
Характерной особенностью фундаментов опор мостов с низким ростверком является расположение подошвы ростверка ниже дневной поверхности грунта или поверхности возможного размыва дна русла в период эксплуатации сооружения (см. рис. 8.1, б). Фундаменты с низким ростверком применяют на реках с тяжелым ледовым режимом, а также на поймах рек и в пределах мелких водотоков, когда надо заглубить ниже дневной поверхности грунта или самого низкого уровня воды обрез фундамента. Кроме того, такие фундаменты применяют при необходимости заглубления свай ниже зоны истирающего воздействия перемещающихся в течение нескольких недель в году, а иногда и месяцев песчаных или гравийно-галечных наносов. В этих случаях проще дополнительно заглубить в грунт ростверк, чем осуществлять какие-либо мероприятия по защите свай от неблагоприятного воздействия наносов.
Основным недостатком расположения ростверка в грунте является необходимость в дополнительных затратах труда и времени на устройство и разборку более мощного ограждения котлована, воспринимающего давление не только воды, но и грунта, а также на разработку и удаление грунта из котлована.

42. Основные положения и особенности проектирования фундаментов для сейсмических районов.
4.1 Настоящий Свод правил содержит рекомендации по проектированию жилых и общественных зданий, обеспечивающие их сейсмостойкость.
4.2 При разработке проектной документации следует:
- применять конструктивные схемы, материалы и конструкции, обеспечивающие наименьшие значения сейсмических нагрузок;
- принимать объемно-планировочные и конструктивные решения, обеспечивающие, как правило, симметричность и регулярность распределения в плане и по высоте сооружения его массы, элементов жесткости и нагрузок на перекрытия;
- назначать сечения элементов конструкций и их соединения с учетом результатов расчетов по разделу 6;
- конструировать стыковые соединения, опорные элементы и узлы таким образом, чтобы они обеспечивали надежную передачу усилий и совместную работу несущих конструкций во время землетрясения;
- создавать возможность развития в определенных элементах допустимых неупругих деформаций;
- предусматривать конструктивные мероприятия, обеспечивающие устойчивость и геометрическую неизменяемость конструкций при развитии в элементах или соединениях между ними неупругих деформаций, а также исключающие возможность их хрупкого разрушения;
- располагать, по возможности, стыки элементов вне зоны максимальных усилий.
4.3 Проекты сооружений с принципиально новыми конструктивными решениями, не прошедшими экспериментальную проверку, должны разрабатываться по специальным техническим условиям.
4.4 Сооружения, оснащенные системами сейсмоизоляции или другими системами регулирования динамической реакции, проектируют по специальным техническим условиям.
4.5 На площадках, сейсмичность которых превышает 9 баллов, возводить сооружения, как правило, не допускается.
При соответствующем научно-техническом и экономическом обосновании строительство на таких площадках в каждом конкретном случае может быть допущено по специальным техническим условиям.
4.6 Следует избегать строительных площадок с крутизной склонов более 15°, участков с плоскостями геологических сбросов и с сильной нарушенностью структуры пород физико-геологическими процессами, площадок с просадочными грунтами, осыпями, обвалами, плывунами, оползнями, селями, карстом, горными выработками и т.п. неустойчивыми грунтовыми средами.

43. Основные положения расчетов фундаментов глубокого заложения.
Фундаменты глубокого заложения массивных опор эксплуатируемых мостов можно подразделить на три вида:
– абсолютно и относительно жесткие фундаменты глубокого заложения: сплошные – типа опускных колодцев или кессонных фундаментов и раздельные столбчатые из оболочек диаметром 2 м и более, которые погружаются вертикально и размещаются в один ряд нормально к плоскости действия усилий. Эти фундаменты рассчитываются по схеме закрепленного в грунте стержня, с учетом упругих деформаций грунта, окружающего фундамент;
– фундаменты типа низких свайных ростверков, плита которых погружена на нормируемую глубину в грунт с учетом размыва последнего. Заделка плиты ростверка в грунт обеспечивает отсутствие заметных линейных смещений ростверка под действием горизонтальных сил ограниченной величины, вследствие чего изгиб свай в расчетах не учитывается;
– фундаменты типа высоких свайных ростверков на сваях сплошного сечения или оболочках, погружаемых вертикально и с наклоном в два или большее число рядов в плоскости действия усилий. Такие фундаменты рассчитываются по схеме рамы со стойками, верхние концы которых защемлены в плите ростверка, а нижние – в грунте на некоторой глубине от его поверхности; стойки рам воспринимают все виды усилий, работая на сжатие с изгибом.
Расчеты грузоподъемности указанных видов фундаментов глубокого заложения выполняются по следующим формам:
• по прочности материала фундаментов в наиболее опасном сечении;
• по прочности грунтового основания.
В расчетах грузоподъемности фундаментов учитываются следующие возможные параметры технического состояния:
– крены опоры (фундамента) вдоль и поперек оси моста;
– вертикальные трещины, возникающие при прогибах фундамента и разделяющие его на отдельные части;
– снижение прочности материала фундамента.
Условия формирования алгоритмов расчета грузоподъемности указанных видов фундаментов носят различный характер и в этой связи рассматриваются индивидуально.
Грузоподъемность фундаментов глубокого заложения устанавливается при экстремальных сочетаниях нормативных нагрузок и воздействий


44. Особенности поведения структурно-неустойчивых грунтов под нагрузками.
К структурно-неустойчивым видам грунтов мы относим: илы, структура которых легко нарушается при быстром возведении на них сооружений и при обычных нагрузках вследствие малой прочности их структурных связей; лессовые гр., теряющие свою структуру и несущую способность при замачивании под нагрузкой, и мерзлые гр., структура которых резко нарушается при оттаивании. Можно привести и ряд других структурно-неустойчивых видов гр., как, например, ленточные глины, заторфованные гр. и пр., но мы ограничимся рассмотрением особенностей физических свойств только перечисленных трех характерных видов связных структурно-неустойчивых. Полный анализ поведения этих гр-в под действием внешних сил (нагрузок от сооружений) может быть сделан лишь при использований основных методов механики грунтов, изложенных в последующих главах.
Отметим лишь, что для сыпучих рыхлых проб с жестким скелетом нарушение устойчивости структуры может привести к катастрофическим разжижениям их и к так называемым самопроизвольным осадкам, особенно опасноразжижения грунтов при вибрациях. Это явление заключается в том, что массы насыщенных водой гр-в с жестким скелетом при определенных условиях изменяют свою структуру, приобретают свойства жидкости и растекаются на большие расстояния. Как показали соответствующие исследования, изменение структуры песков возникает при некоторой «критической» пористости, причем непрерывное равномерное движение при сдвиге также может привести скелетные грунты к разжижению. Опыты показывают, что крупнозернистые пески вообще не разжижаются; для средних и мелких песков опасным является рыхлое их залегание. Однако механизм разжижения песков и возникновения внезапных осадков в настоящее время еще недостаточно изучен. Появление очага внезапных осадок, по-видимому, связано с возникновением местных сдвигов, например при сотрясениях, взрывах и тому подобных воздействиях, которые нарушают устойчивость структуры грунта в данном месте. Вследствие местных нарушений структуры грунт, насыщенный водой и имеющий рыхлую структуру, быстро приобретает более плотное сложение, причем уплотнение, начавшееся в одном месте, охватывает все новые и новые области, а излишек воды разжижает грунт. Несомненно, на разжижение песков влияет и величина гидродинамического давления воды. Этот процесс можно пояснить на следующей схеме. Если представить грунт в виде шаров одинакового размера, то насыпь их в наиболее рыхлом сложении имеет 48% пор, что соответствует коэффициенту пористости в =0,91, тогда как при плотной укладке тех же шаров под углом 60° к горизонту (каждый шар касается других шаров в восьми точках) насыпь имеет 26% пор, что соответствует коэффициенту пористости в =0,35. Первая неустойчивая структура шаров при сотрясении или вследствии другой причины может перейти в более плотную, причем объем пор уменьшится, и, если поры были заполнены водой, некоторое количество воды окажется излишним. Приведенные данные показывают, что при возведении сооружений на рыхлых песках, имеющих неустойчивую структуру, или на глинистых грунтах, подстилаемых рыхлыми песками, могут возникнуть неожиданные сдвиги и внезапные осадки. В заключение отметим, что всякое нарушение устойчивости природной структуры или структурной связности грунтов (например, во время производства строительных работ) ведет к ухудшению свойств как оснований для сооружений, что вызывает необходимость учитывать следующие практические положения.


45. Подготовка оснований к заложению фундаментов.

Глубина заложения фундамента должна обеспечить несущую способность основания.
Вы должны определить глубину фундамента. Она может зависеть от:
• Особенностей вашего сооружения (например, подвал, коммуникации и т.д.)
• Нагрузка вашего сооружения на основание
• Рельефа территории
• Геологические и гидрогеологические условия (Пустоты в грунте, уровень грунтовых вод)
• Пучение и осадок грунта
Таблица заложения фундамента при пучении грунтов:

Минимальная глубина фундаментов- 50 см от поверхности земли может быть принята:
• Где глубина заложения фундаментов не зависит от глубины промерзания.
• При малом строительстве (одноэтажные дома без подвалов, бани, хозяйственные постройки). В этом случае фундаменты необходимо выполнять в виде не прерывной железобетонной ленты, с армированием верхней и нижней части фундамента. Использовать арматуру не менее 12AII(5 шт.). Стык арматуры выполнять внахлёст.
Растительный слой земли нужно убрать, под подошву фундаментов следует устроить подушку толщиной не менее 10 см из песка или ПГСа.
При выборе заложения фундаментов рекомендуется:
• выбирать несущие слои грунта с учетом его несущей способности.
• Фундамент должен быть заглублен в несущий слой грунта не менее чем на 10 см.
• При заложении фундамента ниже уровня грунтовых вод, предусматривать методы работ, сохраняющих структуру грунта.


46. Условия работы свай-стоек и висящих свай..

Перед производством свайных работ подготавливается площадка: снимается растительный слой, производится устройство водоотвода, вертикальная планировка участка, устройство подъездных путей, прокладываются сети для подвода воды, пара, сжатого воздуха, электроэнергии. При планировке площадки необходимо учитывать, что отдельные впадины и возвышения не должны превышать 10 см. Площадка присыпается песком или песчано-гравийной смесью.
После окончания работ по подготовке площадки и разбивки главных осей сооружения (за основные линии принимаются продольная и поперечная оси здания) производят разбивки свайных рядов и закрепление на местности. Оси свайных фундаментов разбивают от основных линий сооружения, которые должны быть прочно закреплены на местности — основные оси закрепляют надежно заделанными в грунт створными знаками (бетонными столбами, металлическими трубами, рельсами). Створные знаки закладывают в устойчивых грунтах за пределами зоны возможных обвалов, положение створных знаков периодически проверяется геодезическими приборами. Разбивка основных осей должна сохраняться на все время производства работ. Репер также устанавливают в местах, в которых исключено смещение грунта. Абсолютную отметку репера проставляют на нем краской. Разбивка осуществляется в соответствии с планом размещения свай, на котором указаны: несущая способность свай и проектный отказ, полученный при предпроектных испытаниях пробных свай; привязка осей свайных рядов, одиночных свай или кустов к разбивочным осям сооружения; шаг свай; отметка начала острия и верха свай; порядковые номера свай (нумеруются все сваи в пересечениях разбивочных осей здания, каждая пятая в ряду, первая и последняя в кусту). Сначала разбиваются сваи, расположенные на главных и вспомогательных осях сооружения. Сваи, расположенные на промежуточных осях, разбивают одновременно с ними, если разбивочная сетка превышает размер 6x6 м. При меньшем размере положение свай на промежуточных осях разбивается в процессе погружения. Разбивку каждого свайного ряда и куста сохраняют до приёмки всех свай этого ряда. Каждому ряду, кусту и каждой свае присваивают номер, который проставляют на плане расположения свай (для нумерации свайных рядов и кустов принимают римские цифры, для свай — арабские). Разбивку центров свай производят с помощью стальной ленты, прокладываемой по провешенной оси соответствующего свайного ряда. Центр сваи закрепляют штырем или деревянным колышком длиной 20-25 см; положение свай, находящихся на главных осях, дополнительно фиксируют деревянными сторожками, на которые наносят номер сваи. Вертикальные отметки голов свай разбивают по реперам. При забивке свай с подмостей положение осей рядов свай фиксируется прямо на них. При погружении свай на покрытой водой местности разбивочные оси закрепляются знаками на берегу или специальными каркасами и буями. Разбивка и закрепление осей свай оформляется актом.
На строительной площадке сваи разгружают с одновременной укладкой в зоне работы копра поодиночке или штабелями головами к копру перпендикулярно оси его движения. Поднимать сваи при разгрузке и погрузке необходимо за подъемные петли. При подъеме свай длиной более 6 м следует пользоваться траверсой. Перетаскивать сваи волоком запрещается. При укладке свай в штабеля их укладывают правильными рядами в горизонтальном положении не выше четырех рядов по высоте; если позволяет территория, желательно разложить в один ряд по высоте. Между горизонтальными рядами свай укладываются прокладки шириной не менее 5 см, расположенные рядом с подъемными петлями (для сохранности петель толщина прокладок должна быть на 2-3 см больше их высоты). На строительной площадке располагать сваи более чем в два яруса по высоте не рекомендуется.
При приемке доставленных на объект свай проверяется документация на их изготовление, правильность маркировки, производится наружный осмотр. В процессе подготовки свай непосредственно к погружению при необходимости производится укрупнительная сборка и обустройство свай. Укрупнительную сборку свай по длине производят в соответствии с проектом производства работ либо предварительно на специальной площадке, либо в процессе погружения. Звенья составных железобетонных свай соединяют электросваркой закладных частей, фланцами на болтах, клиновыми и другими устройствами; короткие трубчатые сваи соединяются с помощью вкладыша. Сваи-оболочки диаметром 2-3 м изготовляются члененными звеньями высотой 4-8 м, при большем диаметре каждое звено дополнительно членится продольными швами (конструкция продольных стыков устанавливается проектом). Деревянный шпунт в слабые грунты погружают пакетами из двух-трех шпунтин, сплоченных заранее и объединенных общим наголовником из обрезков швеллера. Для соединения с вибропогружателем в верхней части шпунта просверливают отверстие. К полым железобетонным сваям, погружаемым с закрытым концом, приваривают железобетонный наконечник, а к металлическим — конусообразный наконечник, изготовленный из листовой стали. Во всех случаях нужно следить за точной центровкой острия свай, так как смещение острия от продольной оси или несимметричность заострения могут привести к отклонению сваи по вертикали в процессе погружения. Перед погружением металлического шпунта протягиванием через шаблон проверяют его прямолинейность и сохранность замков, срубают наплывы, прорезают в верхней части отверстие для соединения с вибропогружателем. Заранее изготовляют угловой шпунт, для чего разрезают вдоль целые шпунтины и соединяют их заклепками внахлестку.
В процессе подготовительных работ производят пробную забивку железобетонных готовых свай. По результатам испытания пробных свай корректируют чертежи свайного сооружения и проект производства работ. Способ производства работ по устройству свайного фундамента выбирается в зависимости от типа свай, их размеров, веса, конструкции, расположения их в плане, от грунтовых условий и конкретных условий производства работ на строительной площадке.

Добавлено через 2 минуты
47. Фундаменты в сейсмических районах.

Сейсмическая активность земли проявляется на обширной части СССР. Общая площадь районов, подверженных землетрясениям, составляет около 28% территории страны.
Подавляющее большинство землетрясений возникает в результате тектонических процессов. Такие землетрясения наиболее часты (90% всех землетрясений) и достигают значительной силы. Происходящие вблизи действующих вулканов землетрясения охватывают небольшие территории. Они намного слабее тектонических. Еще меньшей силой обладают местные землетрясения, возникающие в результате горных обвалов, оползней, провалов карстовых полостей, шахтных и других выработок.
Землетрясения возникают, как правило, в определенных зонах (сейсмических), где продолжаются горообразовательные процессы. В этих зонах земная кора расчленена тектоническими разломами на отдельные массивы, испытывающие интенсивные взаимные смещения. Вызванные ими нарушения происходят по существующим или по вновь образовавшимся разломам.
Находящаяся в глубине земли область нарушения коры является очагом (гипоцентром) землетрясения. Проекция этого очага из центра земли на ее поверхность называется эпицентром землетрясения. Очаги обычно имеют вытянутую вдоль разломов форму. Их размеры изменяются от нескольких метров до десятков километров и в основном предопределяют силу землетрясения. При разрушительных землетрясениях очаги в большинстве случаев располагаются в толще земной" коры на глубине 10—50 км и более от ее поверхности.
В районе землетрясения каждая точка земли испытывает последовательное воздействие волн разного вида, поэтому колебания грунта при землетрясениях носят сложный пространственный характер. Из-за этого сейсмические силы могут иметь любое направление в пространстве и к тому же быть переменными по направлению, скорости и величине.
Продолжительность сейсмического импульса и вызываемых им колебаний грунта измеряется десятками секунд, а иногда несколькими минутами. Наиболее опасное воздействие землетрясения происходит в первые 20—40 с, чаще всего с первым мощным импульсом и следующим за ним сейсмическим колебанием грунта.
Для обеспечения достаточной надежности зданий и сооружений, возводимых в сейсмических районах, прежде всего необходимо знать силу землетрясения, которую обычно оценивают по общему разрушительному эффекту, характеризуемому сейсмическими баллами по соответствующей шкале.

48. Фундаменты из тонкостенных оболочек.

В фундаментостроении получили распространение тонкостенные железобетонные оболочки диаметром 0,8—3 м. Оболочки обычно рекомендуется применять при необходимости прорезки слабых грунтов и опирании их на достаточно прочные грунты. Оболочки диаметром до 2 м изготовляют на заводах способом центрифугирования секциями длиной до 6 м, а большего диаметра — на полигонах в виброформах, Оболочки изготовляют с ненапряженной и напряженной арматурой и армируют их продольными арматурными стержнями и поперечной спиральной арматурой с защитным слоем 2,5 см.
При возведении фундаментов глубокого заложения из оболочек выполняют следующие работы: укрупнительную сборку секции оболочек, погружение оболочек, разработку и извлечение грунта из полости, разбурйвание скального основания, заполнение полостей оболочек бетонной смесью, армирование и бетонирование ростверка.
При погружении оболочек из секций соединяют сваркой арматуру и закладные детали или выполняют фланцевые соединения на болтах.
Железобетонные цилиндрические оболочки обычно погружают вибрационным и виброударным способами. Оболочки малого диаметра (до 1 — 1,2 м) погружают паровоздушными молотами одиночного и двойного действия, дизельными штанговыми и трубчатыми молотами.
При погружении оболочек необходимо принимать меры по предотвращению образования трещин в бетоне. Для этого в верхней части оболочки по ее наружному контуру при изготовлении устанавливают предохранительные кольца. Предохраняют оболочки от разрушения и специально сконструированные наголовники. Надежное обжатие оболочки в наголовнике предотвращает возможность появления трещин в бетоне верхней части оболочки.
Вибропогружатель должен быть плотно прикреплен к оболочке. При этом наголовник, с помощью которого вибропогружатель соединяется с оболочкой, должен быстро устанавливаться и сниматься. Применяют наголовники с фланцевым соединением на болтах, а также самозаклинивающиеся с клиновым или цанговым устройством.
Перед погружением оболочку поднимают и устанавливают в требуемое положение.


При небольшой глубине погружения оболочки предварительно собирают полностью. При большой глубине секции оболочек наращивают по мере их погружения.
В начальный период погружения необходимо особенно тщательно обеспечивать проектное положение оболочек. Для вертикальных и наклонных оболочек применяют универсальные копры, портальные краны с направляющими стрелами, направляющие устройства в виде передвижных стрел и каркасов.
Вибропогружение оболочек состоит из чередующихся циклов осаживания оболочки и удаления из ее полости грунта. Грунт удаляют после того, как прекращается заглубление оболочки вследствие возрастания сопротивления образующегося грунтового ядра. После удаления грунта погружение возобновляют. С увеличением заглубления оболочки резко возрастает сопротивление и скорость погружения замедляется. Для облегчения погружения оболочек применяют подмыв или удаляют грунт из полости оболочки до уровня ножа, а иногда и ниже его.
Выбирая тип вибропогружателя, следует учитывать, что для заглубления оболочек в рыхлые, несвязные, текучепластичные и мягкопластичные пылевато-глинистые грунты следует применять вибропогружатели с более высокой частотой колебаний (500—600 мин), для погружения в плотные грунты предпочтительна частота колебаний 300—500 мин.
Железобетонные оболочки больших диаметров погружают спаренными вибропогружателями, работающими с автоматической синхронизацией.
Вибропогружение оболочек следует вести по поточной технологии, для чего в работе одновременно должны находиться не менее четырех оболочек, на каждой из которых последовательно выполняют одну из следующих операций: установку оболочки, наращивание очередной секции оболочки, крепление к оболочке вибропогружателя и ее погружение, извлечение грунта из оболочки.

49. Фундаменты с наклонной подошвой.

a - сборный железобетонный ленточный фундамент пятиэтажного крупнопанельного дома, в - сборно-монолитный отдельный фундамент под колонну каркаса промышленного здания, 1 - кладка из природного камня на известковом растворе; 2 - валуны; 3 - лежни, 4 - стена, 5 - стеновые блоки, 6 - блок-подушка, 7 - монолитный фундамент. 8 - сборный подколонник. 9 - колонна; 10 - обратная
засыпка пазух и под пол подвала
3) фундаменты глубокого заложения (столбы, плиты), которые позволяют передавать нагрузки на плотные слои грунтов, скалу на глубине десятков метров; в последнем случае роль фундаментов могут играть конструкции подземного сооружения (плиты, стены, колонны). Такие фундаменты имеют небоскребы Нью-Йорка, высотные дома Москвы, Московская телебашня, а также массивные промышленные сооружения - атомные реакторы, доменные печи, зерновые элеваторы и т. п.
В данном учебнике рассматриваются вопросы проектирования и устройства фундаментов вновь возводимых зданий и сооружений, фундаменты реконструируемых зданий, методы усиления или замены фундаментов существующих зданий.
Основания подразделяют на естественные и искусственные (улучшенные).
Естественное основание-обычный природный грунт, используемый как опора фундаментов без предварительной подготовки (слой грунта, залегающий непосредственно под подошвой называется несущим, остальные - подстилающими).

Рис. 2. Некоторые разновидности свайных фундаментов: а - ряды свай под кирпичную стену здания постройки XIX в.; б - рядное расположение свай под несущую стену крупнопанельного дома; в - свая-колонна каркасного здания промышленного типа; I - слабый грунт; 2 - плотный грунт; 3 - деревянная свая; 4 - железобетонная забивная свая; 5 - буровая свая; б — деревянный ростверк, 7 - фундамент из природного камня; 8 - железобетонная «подстенная» балка (ростверк); 9 - стеновая панель; 10 - железобетонная колонна каркаса
Искусственные основания выполняются заменой естественного грунта или посредством улучшения его свойств. Используют немало способов создания искусственных оснований. Простейший из них - искусственная подушка (песчаная, щебеночная и др.). Ею заменяют верхние ненадежные слои грунта (насыпные грунты, торфы, илы и т. п.). Кроме того, существует большое количество других способов искусственного улучшения грунтов (рис. 3).
Современная геотехника бурно развивается на основе достижений машиностроения, химии, технологии материалов, на базе критического освоения предшествующего опыта строительства посредством геотехнического мониторинга - системы слежения за изменяющимися от строительных воздействий параметрами геологической среды (оснований зданий).
Практике строительства предоставлен достаточно широкий выбор средств и методов разрешения одной и той же задачи - пе-

Рис. 3. Некоторые виды искусственных оснований: а - песчаная подушка (взамен слоя насыпного грунта); 6 - песчаные сваи-дрены, упрочняющие слабый илистый грунт; I - насыпной грунт: 2 - песчаная подушка; 3 - песчаные сваи-дрены; 4 - плотный грунт
редачи нагрузок и воздействий от сооружений на основание. Из разных материалов могут быть выполнены фундаменты мелкого заложения (например, из местного природного камня, монолитного или сборного железобетона, стали, дерева). Велико разнообразие типов свай, которые можно изготовить из дерева (бревен), бетона, железобетона, стали, поэтому одной из важных особенностей фундаментостроения является вариантное проектирование. При выборе вариантов предпочтение отдается тем, которые требуют наименьших затрат (материалов, средств, времени), учитывают технические и технологические возможности подрядчиков (строительных фирм), не наносят вреда окружающей среде.


50. Фундаменты типа «стена в грунте».

Особый случай составляют фундаменты из «стен в грунте», которые являются одним из видов подземных сооружений, применяемых при строительстве различных зданий промышленного и гражданского назначения. «Стены в грунте» могут быть использованы в качестве несущей конструкции (например, фундаменты протяженного сооружения) или служить ограждающей стеной подвального помещения, подземного гаража (рис. 7.5, а) и т. п. Можно их использовать и для крепления котлована (рис. 7.5, б) с последующим включением в состав фундамента. В мостостроении из «стен в грунте» возвели фундамент устоя одного из мостов (рис. 7.5, в). Фундамент этого типа имеет рациональную форму, так как развит именно в направлении действия сил, что обусловливает наиболее эффективное использование материала фундамента.
Рис. 7.5. Схемы использования сетей в грунте а — подземный гараж около существующего здания; б — ограждение котлована; в — фундамент устоя моста; 1 — фундамент здания; 2 — «стена в грунте»; 3 — распорка; 4 — водоупорный слой грунта; 5 — тело устоя моста
«Стены в грунте» возводят непосредственно на месте строительства, для чего специальным оборудованием разрабатывают под защитой глинистого раствора траншеи, которые затем бетонируют методом вертикально перемещаемой трубы (ВПТ) либо заполняют сборными бетонными или железобетонными элементами. Вертикальные зазоры между этими элементами заделывают цементно-песчаным или цементно-глинистым раствором. Форма «стен в грунте» и их размеры определяются назначением этих конструкций и применяемым для их изготовления оборудованием. Толщина «стен в грунте», из которых сооружаются фундаменты, в основном колеблется в пределах 0,4—1 м, а их глубина может достигать 20 м и даже более.

51. Объемно-планировочное решение здания.

Расположение (компоновка) помещений заданных размеров и формы в едином комплексе, подчиненное функциональным, техническим, архитектурно-художественным и экономическим требованиям, называется объемно-планировочным решением здания (ОПР).
Весь внутренний объем здания разделяется горизонтальными (междуэтажными перекрытиями) и вертикальными (стенами и перегородками) конструкциями на отдельные помещения.
Помещения по способу их связи между собой могут быть непроходными (изолированными) ипроходными (неизолированными). Непроходные помещения сообщаются между собой с помощью третьего помещения, обычно одного из коммуникационных (коридора, лестничной клетки и др.).
По признакам расположения и взаимосвязи помещений различают несколько объемно-планировочных системзданий:
- анфиладная;
- система с горизонтальными коммуникационными помещениями;
- зальная;
- атриумная;
- секционная;
- смешанная (комбинированная).
Если помещения соединяются друг с другом непосредственно через проемы в стенах или перегородках, то такой прием называется анфиладной системой планировки (см. рис. 2.1). Эта система позволяет создать здание очень компактной и экономичной структуры в связи с отсутствием (или минимальным объемом) коммуникационных помещений. Все основные помещения в здании при анфиладной системе являются проходными, поэтому она применима лишь в зданиях преимущественно экспозиционного характера (музеях, картинных галереях, выставочных павильонах), либо частично в отдельных элементах здания, например, между помещениями одной воспитательной группы в детском дошкольном помещении.

Рис. 2.1. Анфиладная система планировки

Система с горизонтальными коммуникационными помещениями предусматривает связь между основными помещениями здания через коммуникационные помещения (коридоры, открытые галереи). Это позволяет основные помещения проектировать непроходными. При этом помещения могут быть расположены по одну (рис. 2.2 а) или по обе стороны коридора (рис. 2.2 б). При одностороннем расположении помещений коридор имеет хорошую освещенность естественным светом, которая в некоторых случаях необходима, например, в школах, где коридор одновременно служит в качестве рекреационного помещения.


Рис. 2.2. Система планировки с горизонтальными коммуникационными помещениями
а – галерейная; б– коридорная
1 – открытая галерея; 2 – закрытый коридор; 3 – рабочие или жилые помещения



Планировочная компактность и экономичность решения здания с горизонтальными коммуникациями оценивается количеством площади основных и вспомогательных помещений здания на единицу площади или длины коммуникационных помещений. По этому признаку наиболее экономичны схемы с двумя параллельными или кольцевыми коридорами. Системы планировки с горизонтальными коммуникационными помещениями широко применяется в проектировании гражданских зданий самого различного назначения – общежитий, гостиниц, школ, больниц, административных зданий и т.п.
Недостатком одностороннего расположения помещений является увеличение подсобной площади в здании и периметра наружных стен, что ухудшает экономическую характеристику объемно-планировочного решения.

Зальная система планировки предусматривает одно большое (главное) помещение здания, как правило, определяющее его функциональное назначение (кинозал, спортивный зал и т.п.), вокруг которого группируются остальные необходимые помещения (см. рис. 2.3). Наиболее распространена эта система при проектировании зрелищных, спортивных и торговых зданий. Зальную систему применяют для зданий с одним или несколькими залами.


Рис. 2.3. Зальная система планировки


Атриумная система – с открытым или крытым двором (атриумом), вокруг которого размещены основные помещения, связанные с ним непосредственно через открытые (галереи) или закрытые (боковые коридоры) коммуникационные помещения (см. рис. 2.4).

Рис. 2.4. Атриумная система планировки
1 – атриум; 2– коммуникационные помещения

Добавлено через 3 минуты
54. Определение глубины заложения фундаментов.

Глубину заложения фундаментов принимают в зависимости от глубины промерзания грунтов, наличия и уровня грунтовых вод, структуры грунта, расчетных нагрузок и т. п. Глубина заложения фундамента принимается преимущественно ниже глубины промерзания (кроме грунтов, не подверженных пучению при замерзании, и некоторых других), но не менее 500мм.
При определении глубины заложения фундаментов малоэтажных домов можно руководствоваться данными, приведенными в таблице1, а глубину промерзания определять по схематической карте в зависимости от климатической зоны, где ведется строительство дома.
Данные для определения глубины заложения фундамента
Также глубину промерзания грунтов можно определить по географическим показателям. На большей территории России эта глубина достаточно значительна. Для каждой местности определена нормативная глубина промерзания на которой зимой сохраняется температура 0 градусов, а н глинистых и суглинистых почвах -1 градус. При этом расчетную глубину промерзания можно уменьшить на 30% если здание регулярно отапливается и полы в этом здании на грунте, на 20% уменьшают если полы на лагах по кирпичным столикам, и на 10% если полы на балках.
Самым серьезным фактором, влияющим на глубину промерзания, является уровень грунтовых вод. Высокая влажность почвы способствует ее полному промерзанию. Замерзая, вода увеличивается в объеме на 10% и, как следствие, возникает пучение почвы. Грунт как бы выталкивает фундамент дома из себя. Причем делает он это неравномерно. Весной, по мере таяния льда, грунт засасывает в себя фундамент обратно. Эти движения фундамента приводят к его деформации и разрушению.
Поэтому весьма важно правильно сделать фундамент. Обычно стараются сделать фундамент высотой ниже точки промерзания так, чтобы он стоял на слоях никогда не промерзающих. Но многолетние наблюдения показывают, что такой фундамент будет эффективен если вы строите тяжелые кирпичные и каменные двух-трехэтажные дома. Сейчас же широко распространены дома из легких материалов (брус, легкие бетоны, панели). Нагрузка на грунт в таких домах составляет примерно 40-100 кН на 1 м погонный. А это значит, что деформации все равно не избежать. И деформация будет происходить уже за счет трения фундамента о грунт. Таким образом получается, что в легких домах возможности фундамента используются примерно на 10-20%, то есть до 80% средств мы тратим впустую.

55. Требования, предъявляемые к ограждающим конструкциям.

Общие требования безопасности, предъявляемые к конструкции технологического оборудования, установлены ГОСТ 12.2.003-91 “ССБТ. Оборудование производственное. Общие требования безопасности”. Элементы конструкции машин не должны иметь острых углов, кромок и т. п., представляющих источник опасности при обслуживании. Конструкция должна исключать возможность случайного соприкосновения с горячими или переохлажденными частями. Все ее элементы, в том числе подводящие и отводящие коммуникации, должны предотвращать возможность случайного повреждения, вызывающего опасность при обслуживании. Системы подачи сжатого воздуха, пара, воды должны отвечать действующим требованиям и нормам.
Выделение теплоты, влаги и пыли в производственное помещение не должно превышать предельных уровней (концентраций), установленных для рабочих зон. С этой целью для удаления взрыво- и пожароопасных веществ из мест их образования должны быть смонтированы встроенные устройства. В производственных помещениях должны быть предусмотрены вентиляция и кондиционирование воздуха, а также аспирация оборудования.
Узлы и детали машин должны быть изготовлены из безопасных и безвредных материалов. Как правило, новые материалы проходят санитарно-гигиеническую и пожаробезопасную проверку. Рабочие места должны быть безопасными и удобными для выполнения работ по обслуживанию машин. Все узлы машин, требующие смазки, снабжают автоматическими смазочными приборами или устанавливают масленки с резервуарами достаточной вместимости, что позволяет заполнять их во время остановок машин.
Конструкцией машин должна предусматриваться защита от поражения электрическим током, включая случаи ошибочных действий обслуживающего персонала. Кроме того, должна быть исключена возможность накопления зарядов статического электричества в опасных количествах. С этой целью все машины, аппараты, участки самотечных труб и другие устройства, генерирующие заряд статического электричества, снабжают надежной системой заземления. Конструкцией оборудования также должны предусматриваться системы сигнализации, автоматической остановки и отключения от источников энергии при неисправностях, авариях и опасных режимах работы.
Движущиеся части оборудования, являющиеся источником опасности, ограждают. Если оборудование эксплуатируют без ограждения, то в этом случае устанавливают предупредительную сигнализацию о пуске машин и средства остановки и отключения от источника энергии. При наличии транспортирующих машин значительной длины средства остановки располагают не менее чем через каждые 10 м. Производственное оборудование, обслуживание которого связано с перемещением людей, должно иметь удобные и безопасные проходы и приспособления для ведения работ (лестницы, постаменты, рабочие площадки).
К органам управления оборудованием предъявляют следующие основные требования:
• по форме, размерам поверхности они должны быть безопасны и удобны в работе;
• место расположения (доступность) их не должно затруднять выполнение отдельных операций;
• усилие для приведения в действие органов управления не должно быть слишком велико (непосильно) или мало (случайное касание вызывает пуск или остановку машин);
• конструкция должна исключать самопроизвольный пуск или остановку оборудования;
• органы управления однотипным оборудованием должны быть унифицированы.

56. Лестницы из крупноразмерных элементов и по металлическим косоурам.

По способу устройства лестницы могут быть сборные и монолитные. Сборные бывают из мелкоразмерных и крупноразмерных элементов.
Лестницы из мелкоразмерных элементов состоят из отдельно устанавливаемых железобетонных косоуров, ступеней, железобетонных плит площадок и ограждений с поручнями. Для сопряжения косоуров с площадочными балками в последних предусмотрены гнезда, в которые заводятся концы косоуров. Связь между элементами лестниц достигается, как правило, сваркой закладных деталей. Ступени укладывают по косоурам на цементном растворе. На площадочные балки опираются сборные железобетонные площадочные плиты. При ремонте и реконструкции ранее построенных зданий можно встретить конструкции лестниц из каменных или железобетонных ступеней по косоурам и площадочным балкам из прокатных металлических профилей (швеллер или двутавр). Для повышения огнестойкости металлических конструкций их нужно оштукатурить по проволочной сетке.
Ограждения на лестницах устраивают обычно металлические с деревянными или пластмассовыми поручнями. Стойки ограждения приваривают к закладным деталям ступеней или заделывают на цементно-песчаном растворе в гнезда, имеющиеся в ступенях. В деревянных лестницах сопряжение ступеней с тетивой в боковой ее грани осуществляют путем устройства в них пазов, в которые входят концы досок проступей и подступенков.

Наибольшее распространение в строительстве получили сборные лестницы из крупноразмерных элементов – площадок и маршей заводского изготовления или маршей с двумя полуплощадками. Сборные элементы устанавливают на место кранами и крепят с помощью сварки закладных деталей. Лестничные марши и площадки для жилых зданий изготовляют на заводе с чисто отделанными ступенями и поверхностями. В общественных зданиях применяют марши с накладными проступями, которые укладывают после окончания основных работ по монтажу здания. Целесообразно применение сборных маршей со ступенями складчатого очертания, которые позволяют снизить расход бетона на 15%.
Лестничные площадки своими концами обычно опирают на боковые стены лестничной клетки, а в крупнопанельных зданиях – на специальные металлические элементы (столики), привариваемые к закладным деталям в стеновых панелях лестничной клетки. Во внутриквартирных лестницах допускается применять забежные ступени и винтовые лестницы. По противопожарным нормам такие лестницы не могут служить путями эвакуации, поэтому не применяются в качестве основных. При назначении размеров клинообразных забежных ступеней и ступеней винтовых лестниц их расчетные величины принимают по середине марша. Винтовые лестницы могут быть выполнены из дерева, металла, сборного и монолитного железобетона. Ступени опираются на стены и на центральный опорный столб. Они могут быть рассчитаны и в виде консолей с опиранием только на стены или только на опорный столб.
Монолитные железобетонные лестницы применяют редко, главным образом в уникальных зданиях, если лестнице по архитектурно-планировочным соображениям придается нетиповое решение. Их устройство требует сложной опалубки и проведения всех работ на строительной площадке. Перед входом в здание устраивают площадку, которую располагают всегда выше уровня земли не менее чем на 150 мм, чтобы не допускать затекания в помещение атмосферной воды. Для защиты входной площадки от осадков устраивают так называемый козырек. Если перед зданием устраивают наружное крыльцо, то его ступени опирают на специальные стенки, возведенные на самостоятельных фундаментах.
Наружные входы в подвал решают в виде одномаршевых лестниц, располагаемых в приямках, примыкающих к наружным стенам здания и огражденных подпорными стенками. Над приямком возводят пристройку со стенами, крышей и входной дверью или же ограничиваются устройством зонта и низкой бортовой стенки.

57. Виды привязок колонн крайних рядов одноэтажных промышленных зданий к разбивочным осям.
При размещении колонн на плане следует обратить особое внимание на соблюдение правил их привязки к координационным разбивочным осям (рис.1). Следует обратить внимание на то, что фахверковые колонны не должны быть отодвинуты от стен, для крепления которых они предназначены.



Рис.1. Привязка колонн к разбивочным осям:
1 - рядовая крайняя колонна производственного здания при Н до 14.4м или кранах грузоподъемностью до 30т;2 - рядовая крайняя колонна производственного здания при Н более14.4м или кранах грузоподъемностью 30т и более; 3 - угловая колонна производственного здания при Н до14.4м или кранах грузоподъемностью до 30т; За - угловая колонна производственного здания при Н более14.4м или кранах грузоподъемностью 30т и более; 4 - средняя рядовая крайняя колонна производственного здания; 5 - крайние колонны производственного здания у поперечного температурного шва; 6 - средние колонны производственного здания у поперечного температурного шва; 7 - угловые колонны смежных, продолжающих друг друга пролетов здания (правый пролет более высокий); 8 - угловая колонна административно-бытового здания; 9 - угловые колонны смежных, перпендикулярных пролетов производственного здания (правый пролет более высокий); 10 - угловые колонны смежных, параллельных пролетов производственного здания (правый пролет более высокий); 11 - фахверковая колонна производственного здания и колонна смежного административно-бытового здания; 12 - угловые колонны производственного здания и смежного административно-бытового здания; 13 - металлическая рядовая крайняя колонна; 14 - металлическая угловая колонна, с фахверковой стойкой; 15 - колонна под балочную клетку; С| больше или равно б + 100мм, б-толщина стены; Ci = 6+100мм (кратно 100мм);


58. Фахверковые колонны одноэтажных промышленных зданий.
Преобладающим видом промышленных зданий являются одноэтажные (примерно 64% всех промышленных зданий). Это объясняется требованиями технологии, возможностью передачи нагрузок от тяжеловесного оборудования непосредственно на грунт, сравнительной простотой и экономичностью их возведения.
Конструктивные схемы одноэтажных промышленных зданий разнообразны (рис. 1): наиболее распространенными являются од- нопролетная и многопролетная рамные схемы каркасов с системой покрытий (плоской и пространственной) в виде куполов и вантовых конструкций. По виду материалов конструкции каркасов бывают железобетонные и стальные. Железобетонные каркасы могут быть монолитными и из типовых сборных железобетонных элементов заводского изготовления.
Каркас одноэтажного здания с покрытием из плоских элементов состоит из поперечных рам, образованных защемленными в фундаментах колоннами, и шарнирно опирающимися на колонны стропильными фермами или балками. В продольном направлении рамы связаны подкрановыми балками, балками-распорками, подстропильными фермами, жестким диском покрытия и- в необходимых случаях — стальными связями. Жесткий диск образуют плиты, приваренные к стропильным фермам или к балкам с последующим замоноличиванием швов. Плоские конструкции перекрывают пролеты до 36 м.
Пролетом называется внутренний объем, ограниченный двумя рядами колонн и торцовыми стенками.
В связи с массовым выпуском унифицированных 6-м стеновых и оконных панелей в крайних рядах колонн чаще принимают 6-м шаг. В целях эффективного и маневренного использования производственных площадей в средних рядах колонн наиболее распространен 12-м шаг.
Пролеты одноэтажных промышленных зданий принимают равными 12, 18, 24, 30 и 36 м для цехов с крановыми нагрузками и от 12 до 48 м и более для бескрановых цехов.
Колонны сборные железобетонные могут быть сплошными прямоугольного сечения и двухветвевыми.

Рис. 1. Схемы покрытий одноэтажных пролетных зданий а — плоская по стропильным и подстропильным фермам; б — по решетчатым прогонам и стропильным фермам; в — пространственная система покрытия с оболочкой двоякой кривизны
Сплошные колонны применяют в бескрановых цехах и при наличии кранов грузоподъемностью до 30 • 104 Н и высоте здания до 10,8 м; сквозные — при кранах грузоподъемностью более 30 • 104 Н и высоте здания свыше 10,8 м.
Двухветвевые колонны имеют в нижней подкрановой части две стойки (ветви), соединенные распорками по высоте через 1,5—3 м, а в верхней надкрановой части — сплошное прямоугольное сечение.
По расположению в здании колонны бывают крайние и средние. К крайним колоннам с наружной стороны примыкают стеновые ограждения. Крайние колонны, в свою очередь, подразделяют на основные, воспринимающие нагрузки от стен, кранов и конструкций покрытия, и фахверковые, служащие только для крепления стен. Стальные фахверковые колонны (рис. 2) устанавливают в торцах здания и между основными колоннами у продольных стен при шаге основных колени 12 м и 6-м стеновых панелях. В ряду выделяют связевые колонны, соединенные стальными вертикальными связями для восприятия горизонтальных сил.
Колонны армируют сварными каркасами и формуют при прямоугольном сечении из бетона марки 200; двухветвевые — из бетона марок 300—400. Во всех колоннах в местах опирания стропильных конструкций и подкрановых балок, в крайних колоннах на уровне швов стеновых панелей, в связевых колоннах в местах примыкания продольных связей имеются закладные элементы, заанкеренные в бетон или приваренные для фиксации положения к рабочей арматуре. Закладные стальные трубки диаметром 50—70 мм образуют отверстия, используемые для строповки при распалубке и монтаже. Закладные элементы в местах опирания подкрановых балок и стропильных конструкций представляют собой стальной лист с пропущенными сквозь него анкерными болтами.
Для соединения с фундаментом колонну заводят в стакан на глубину до 0,85 м при прямоугольном сечении и до 1,20 м при двухветвевом изамоноличивают бетоном марки, равной марке бетона в колонне.
В поперечном направлении устойчивость зданий обеспечивается жесткостью заделанных в фундамент колонн и жестким диском покрытия, в продольном направлении — дополнительно стальными связями, устанавливаемыми по всем рядам между колоннами и опорами стропильных конструкций.
Межколонные стальные связи располагают в среднем шаге тем- ператуного отсека в бескрановых зданиях при высоте помещений до 10,8 м в пределах подземной высоты колонн; в зданиях с опорными кранами — при любой высоте помещений в пределах высоты подкрановой части колонн. По схеме стальные связи подразделяют на крестовые и портальные.

Рис. 2. Стальной торцовый фахверк а — стойки фахверка; б — ригели


59. Железобетонный каркас одноэтажных промышленных зданий.
Каркас одноэтажного промышленного здания состо¬ит из фундаментов, фундаментных балок, колонн, несущих элементов докрытая, подкрановых балок и связей (рис.70).

Рис. 70. Основные элементы одноэтажного промышленного здания: 1 - столбчатые фундаменты; 2 - фундаментные балки; 3 - колонны; 4- подкрановые балки; 5- фермы; 6 - плиты покрытия; 7 - фонарь; 8 - окна; 9 - стены; 10 - связи.
Каркасы выполняют в основном из сборных железо¬бетонных элементов. Монолитный железобетон приме¬няют при наличии соответствующего технологического обоснования. В зданиях с большими пролетами и высо¬той при грузоподъемности мостовых кранов 50 т и бо¬лее, а также в особых условиях строительства и эксплу¬атации допускаются стальные каркасы. В ряде случаев применяются смешанные каркасы.
При выборе материалов необходимо учитывать раз¬меры пролетов и шага колонн, высоту здания, величину и характер действующих на каркас нагрузок, наличие агрессивных факторов, требования огнестойкости, дол¬говечности и технико-экономические обоснования.
Каркас промышленного здания подвергается сложному комплексу силовых и несиловых воздействий. Сило¬вые воздействия возникают от постоянных и временных нагрузок (собственная масса конструкций, снег, ветер, люди, эксплуатационное оборудование, грузоподъем¬ные устройства и т. д.). В связи с этим элементы карка¬са должны отвечать требованиям прочности и устойчи¬вости.
Несиловые воздействия образуются от влияния внешней и внутренней среды в виде положительных и от¬рицательных температур, пара, содержащихся в возду¬хе химических веществ, действия минеральных масел, кислот и т. д. Все эти компоненты разрушают структуру строительных материалов, а следовательно, и конструк¬ций. Поэтому элементы каркаса должны обладать тер¬мостойкостью, влагостойкостью и биостойкостью.
При строительстве промышленного здания наиболь¬ший расход материалов приходится на несущие элемен¬ты здания, составляющие его каркас. Поэтому снижение расхода этих материалов обеспечивает эффективность строительства. Оно может быть достигнуто более полным использованием физико-механических свойств материа¬лов, в основном, бетона и железобетона, так как именно эти материалы являются основными при изготовлении конструкций каркаса. Экономия может быть достигнута и совершенствованием конструктивной формы элемен¬тов. Так, например, замена железобетонных колонн пря¬моугольного сечения на двухветвевые уменьшает расход железобетона на 22.-.26 %, применение пространственных покрытий вместо плоских сокращает расход бетона на 26 % и стали до 34 %. Большую экономию дает исполь¬зование материалов высокой прочности. Так, повышение классов бетона с ВЗО до В50...В60 позволяет сократить его расход в балках и фермах на 8...10 %, а применение высокопрочной арматуры обеспечивает экономию стали до 36%.
Типовым решением при конструировании сборного железобетонного каркаса одноэтажного промышленного здания является применение поперечных рам из сбор¬ных железобетонных колонн и несущих элементов по¬крытия (балок или ферм) и продольных элементов в ви¬де фундаментных, подкрановых и обвязочных балок, плит покрытия и связей. Соединение несущих элементов покрытия с колоннами в этом случае принято шарнир¬ным. Это позволяет осуществить независимую типизацию балок, ферм и колонн, так как при шарнирном сое¬динении нагрузка, приложенная, к одному из элементов, не вызывает изгибающего момента в другом. Достига¬ется высокая степень универсальности элементов карка¬са, возможность их использования для различных ре¬шений и типов несущих элементов покрытия. Кроме того, шарнирное соединение колонн, балок и ферм кон¬структивно значительно проще жесткого, тем самым об¬легчается изготовление и монтаж конструкций.
Все элементы сборных железобетонных каркасов унифицированы и при проектировании их подбор произ¬водят по специальным каталогам.
В каркасах большой протяженности устраивают тем¬пературные швы, расчленяющие каркас на отдельные участки, называемые температурными блоками. Каж¬дый температурный блок должен иметь длину не более 72 м, ширину не более 144м и обладать самостоятельной
пространственной жесткостью.


60. Обеспечение пространственной жесткости железобетонного каркаса.

Несущей основой промышленных зданий является каркас, состоящий из поперечных и продольных рам. Элементы каркаса, соединяющие между собой поперечные рамы, на-зывают связями.Они воспринимают нагрузки от торможения кранов и ветра, обеспечивая пространствен¬ную жесткость каркаса.
По характеру расположения свя¬зибывают горизонтальные установ¬ленные в плоскости верхнего и ниж¬него пояса ферм, и вертикальные установленные между колоннами или фермами в вертикальной плоско¬сти.
: Конструктивное решение связей зависит от высоты здания, величины пролета, шага колонн, наличия кра¬нов и их грузоподъемности.
Роль горизонтальных связей вы¬полняют плиты покрытия (рис. 38,а). После сварки опорных закладных деталейи заделки швов покрытие приобретает качества «сплошного диска», повышающего пространст¬венную жесткость здания.
- Устойчивость стропильных балок и ферм (в торцах фонарных прое¬мов) обеспечивается горизонтальны¬ми крестовыми связями, установлен¬ными в уровне верхнего пояса. В по¬следующих пролетах (под фонаря¬ми) устанавливают стальные рас-порки.
Ветровые фермы (рис. 38,6) в ви¬де системы горизонтальных связей устанавливают в торцовых стенах зданий значительной высоты. Такие фермы располагаются на уровне подкрановых балок или нижнего пояса ферм.
Горизонтальные крестовые связи в уровне нижнего пояса балок и
ферм имеют здания с мостовыми кранами грузоподъемностью более 30 т.
Вертикальные связи между ко¬лоннами продольных рядов (рис. 38, в, г) устанавливают в середине температурного блока. При шаге ко¬лонн 6 м (рис. 38,(5) ставят кресто¬вые связи, при шаге 12 м (рис. 38,е) портальные. Связи приваривают к закладным деталям колонн. Они воспринимают все горизонтальные нагрузки с покрытия и продольных рам каркаса и передают их на фун¬дамент.
Вертикальные связи между опо¬рами ферм или балок (рис. 38, в, г) ставят в крайних ячейках темпера¬турного блока здания с плоским по¬крытием (без подстропильных кон¬струкций).
Горизонтальные и вертикальные связи являются ответственными эле¬ментами каркаса, обеспечивающими неизменяемость и жесткость здания.

Последний раз редактировалось Tomara; 26.01.2016 в 15:28. Причина: Добавлено сообщение
Tomara вне форума   Ответить с цитированием
3 пользователя(ей) сказали cпасибо: