Показать сообщение отдельно
Старый 16.11.2015, 17:19   #1
Маргошик
Местный
 
Регистрация: 24.08.2013
Адрес: Параллельная реальность
Сообщений: 239
Сказал спасибо: 153
Поблагодарили 312 раз(а) в 102 сообщениях
По умолчанию ИГА_Строительство_ПГС

МТИ лишён гос. аккредитации


Начинаю сбор ответов по ИГА, направление: Строительство

Просьба скидывать готовые ответы, в которых вы уверены по вышеуказанному профилю, также прошу не засорять тему просьбами скинуть ответы на мыло и ответами по другому профилю... В свою очередь, буду скидывать сюда ответы по мере готовности таковых, правда в хаотичном порядке
Все ответы формирую под себя на основании методичек МТИ

Добавлено через 1 минуту
Вопрос №50. Фундаменты типа «Стена в грунте»

Способ «стена в грунте» предназначен для устройства фундаментов и заглубленных в грунт сооружений.
Способ заключается в том, что сначала по контуру будущего сооружения в грунте отрывается узкая глубокая траншея (b = 60-100 см, H ≤ 40-50 м) с помощью жесткого грейфера или механизированного траншеекопателя на проектную глубину с врезкой в водоупор, которая затем заполняется бетонной смесью или сборными железобетонными элементами. Возведенная таким образом стена может служить конструктивным элементом фундамента, ограждением котлована или стеной заглубленного помещения.
Помимо заглубленных сооружений способом «стена в грунте» можно устраивать противофильтрационные завесы. Устройство «стены в грунте» наиболее целесообразно в водонасыщенных грунтах при высоком уровне подземных вод. Способ особенно эффективен при заглублении стен в водоупорные грунты, что позволяет полностью отказаться от водоотлива или глубинного водопонижения.
Существенным достоинством способа является возможность устройства глубоких котлованов и заглубленных помещений вблизи существующих зданий и сооружений без нарушения их устойчивости, что особенно важно при строительстве в стесненных условиях, а также при реконструкции сооружений.
Технология устройства «стены в грунте»:
1. Сооружение «стена в грунте» начинается с устройства сборной или монолитной форшахты, которая служит направляющей для землеройных машин, опорой для подвешивания армокаркасов, бетолитных труб, сборных железобетонных панелей и т. д. и обеспечивает устойчивость стенок в верхней части.
2. Затем производят отрыв котлована отдельными захватками. Откопав первую захватку, на всю глубину стены по ее торцам устраивают ограничители, арматурный каркас и укладывают бетонную смесь.
3. Затем переходят к захватке «через одну», а после ее устройства – к промежуточной, и т. д. В результате получается сплошная стена. Такой метод называется методом последовательных захваток или секционным методом.
Для удержания стен захватки против обрушения по мере углубления в нее подливают тиксотропный глинистый раствор.
Для приготовления глинистых растворов используют бентонитовые глины. Глинистые частицы раствора не только смачиваются водой, но вода проникает внутрь кристалла и глина разбухает, значительно увеличиваясь в объеме. Монтмориллонитовая глина обладает свойством тиксотропии, т. е. при динамическом воздействии она представляет собой раствор, а при отсутствии воздействия через 4–6 ч золь превращается в гель, что позволяет удерживать стенки траншеи.
Уровень раствора должен быть выше уровня подземных вод, чтобы исключить фильтрацию воды из грунта в траншею. Также давление от раствора должно быть больше давления окружающей среды (ξ∙γz).16
После отрывки захватки и заполнения ее бетонной смесью вытесненный глиняный раствор, содержащий частицы разрабатываемой породы, идет на очистку (регенерацию) и снова поступает в траншею (с некоторой потерей – около 10 %).
После возведения «стены в грунте» по всему периметру сооружения (т. е. конструкция замыкает в плане будущее сооружение) поэтапно удаляют грунт из внутреннего пространства. При необходимости на каждом этапе по периметру устраивают грунтовые анкера или распорки. Если крепления не изготавливаются, то устойчивость стены при удалении грунта обеспечивается ее заделкой в основание. После полного удаления грунта из внутреннего пространства до проектной отметки возводят внутренние конструкции.

Вопрос №39. Методы улучшения свойств оснований при строительстве на тех или иных видах структурно-неустойчивых грунтов

К структурно-неустойчивым грунтам относят: мерзлые и вечномерзлые грунты, лессовые просадочные грунты, слабые водонасыщенные, пылевато-глинистые, засоленные, заторфованные грунты. В определенной мере сюда могут быть отнесены и насыпные грунты. Несмотря на различие в условиях образования грунты этой группы объединяет общее свойство: в природном состоянии грунты обладают структурными связями, которые при определенных воздействиях резко снижают свою прочность или полностью разрушаются (это может быть от быстро возрастающих, динамических, вибрационных нагрузок или физических процессов, например повышение температуры в случае мерзлых грунтов, обводнение лессовых или засоленных грунтов и т. д.).
Структурно-неустойчивые грунты часто называют региональными, т. к. грунты сконцентрированы преимущественно в определенных географо-климатических зонах (регионах).
При строительстве на таких грунтах кроме общепринятых для обычных условий решений требуется проведение комплекса специальных мероприятий, учитывающих их особые свойства. Эти мероприятия разделяются на четыре группы:
1. меры, предпринимаемые для исключения неблагоприятных воздействий на грунты;
2. способы искусственного улучшения структурных свойств оснований, с помощью которых нейтрализуются последствия воздействия неблагоприятных факторов;
3. конструктивные мероприятия, понижающие чувствительность зданий к неравномерным деформациям основания;
4. применение специальных типов фундаментов.
7.4.2. Улучшение свойств оснований
При небольших толщах набухающих грунтов для улучшения свойств оснований применяют предварительное замачивание, и строительство ведется как на водонасыщенных ненабухающих грунтах (материалом грунтовых подушек должны служить пылевато-глинистые набухающие грунты).
Компенсирующие подушки применяются для уменьшения неравномерности подъема фундаментов (материалы любые, кроме пылевых и песков).
Принцип работы компенсирующей подушки состоит в следующем. Так как ширина песчаной подушки превышает ширину фундамента, при набухании грунта происходит выпирание песка между фундаментом и стенкой траншеи. Поэтому при подъеме дна такой траншеи песок вокруг фундамента поднимается, а сам фундамент остается практически неподвижным.
Прорезка набухающих грунтов свайными фундаментами и глубокими опорами эффективна, если толща набухающих грунтов не превышает 12 м. Для избежания подъема длина свай должна быть выбрана таким образом, чтобы силы набухания, направленные вверх по боковой поверхности свай, были меньше нагрузок от сооружения и силы сопротивления по боковой поверхности в нижней части сваи, заглубленной в ненабухающие грунты. Для увеличения сил сопротивления в заделанной части сваи можно применять винтовые сваи или сваи с улучшенной пятой.
К конструктивным мероприятиям относится:
• увеличение жесткости здания путем разбивки на отдельные отсеки;
• увеличение жесткости крупнопанельных зданий осадочными швами;
• армирование поясов, устраиваемых в нескольких уровнях по высоте.

Добавлено через 19 часов 35 минут
47. Виды свайных фундаментов

В тех случаях, когда на поверхности залегают слои слабых грунтов, которые не могут служить основанием для фундаментов мелкого заложения проектируемого сооружения, возникает необходимость передачи нагрузки на более плотные слои, расположенные на глубине. В подобных ситуациях чаще всего прибегают к устройству свайного фундамента.

Сваей называют погруженный в готовом виде или изготовленный в грунте стержень, предназначенный для передачи нагрузки от сооружения на грунт основания.
Отдельные сваи или группы свай, объединенные поверху распределительной плитой или балкой, образуют свайный фундамент.
Распределительные плиты или балки, объединяющие головы свай, выполняются, как правило, из железобетона и называются ростверками. Ростверк воспринимает, распределяет и передает на сваи нагрузку от расположенного выше сооружения. Если ростверк заглублен в грунт или его подошва расположена непосредственно на поверхности грунта, то его называют низким ростверком, если подошва ростверка расположена выше поверхности грунта – это высокий свайный ростверк.
Наиболее часто применяют низкий ростверк, высокий ростверк устраивают в опорах мостов, набережных, пирсов и т. д.
Свая, находящаяся в грунте, может передавать нагрузку от сооружения либо через нижний конец (пята), либо совместно с боковой поверхностью сваи за счет трения последней об грунт.

В зависимости от характера передачи нагрузки на грунт сваи подразделяются на:

сваи-стойки;
висячие сваи (сваи трения).
К сваям-стойкам относятся сваи, прорезающие толщу слабых грунтов и опирающиеся на практически несжимаемые или малосжимаемые грунты (крупнообломочные грунты с песчаным наполнителем, глины твердой консистенции). Такие сваи практически всю нагрузку передают через нижний конец, т. к. при их малых вертикальных перемещениях не возникают условия для возникновения сил трения на ее боковой поверхности.
Свая-стойка работает как сжатый стержень в упругой среде, ее несущая способность определяется или прочностью материала, или сопротивлением грунта под ее нижним концом:

Fd=Rs,

где

Fd – несущая способность сваи;

Rs – расчетное сопротивление грунта под нижним концом сваи, кПа.

К висячим сваям относятся сваи, опирающиеся на сжимаемые грунты. Под действием продольной силы N свая получает перемещение (дает осадку), достаточное для возникновения сил трения между боковой поверхностью сваи и грунтом. В результате нагрузка на основание передается как боковой поверхностью, так и нижним концом сваи. Несущая способность такой сваи определяется суммой сопротивления сил трения по ее боковой поверхности и грунта под острием:
Fd=Rf+Rs,

где

Rf – расчетное сопротивление грунта по боковой поверхности сваи.

По условиям изготовления сваи делятся на:

сваи, изготовляемые заранее на заводах или полигоне (предварительно изготовляемые) и затем погружаемые в грунт;
сваи, изготовляемые на месте, в грунте.

По расположению свай в плане различают следующие виды свайных фундаментов:

1. Одиночные сваи применяют под легкие сооружения в качестве опор (теплицы, склады и др.), когда несущей способности одной сваи достаточно для передачи нагрузки на грунт.
Сложность состоит в том, что необходимо точно забить (погрузить) сваю. Отклонение от оси в плане у одиночных свай не должно превышать ±5 см, от вертикальной оси – не более 5º.
2. Группы свай (свайный куст) устраивают под колонны или отдельные опоры конструкций, передающие значительные вертикальные нагрузки.

3. Ленточные свайные фундаменты устраивают под стены зданий и другие протяженные конструкции. Сваи в таком фундаменте располагаются в один или несколько рядов.
4. Сплошные свайные поля устраивают под тяжелые сооружения башенного типа, имеющие ограниченные размеры в плане. Сваи располагаются в определенном порядке под всем сооружением.

В зависимости от материала предварительно изготовленные сваи подразделяют на:

- Деревянные (условия эксплуатации – ниже уровня подземных вод).

Простейшая деревянная свая представляет собой бревно с заостренным нижним концом. На верхний конец бревна надевают бугель (стальное кольцо), который защищает сваю от размочаливания оголовка во время забивки. На заостренном конце при погружении сваи в грунты с твердыми включениями закрепляют стальной башмак. Достоинство таких свай – простота изготовления и небольшой вес. Недостаток – малая несущая способность, трудность погружения в плотные грунты, опасность гниения в условиях переменной влажности. Деревянные сваи имеют ограниченное применение.

- Стальные.

Изготавливают из стандартных стальных труб диаметром d = 0,2–0,8 м, используют также двутавровые балки, швеллеры и другие прокатные профили.
Если после погружения в грунт стальная трубчатая свая заполняется бетоном, ее называют трубобетонной. Достоинство этого вида свай – возможность наращивания сваркой по мере погружения в грунт. Недостаток – подверженность коррозии (для защиты поверхность труб покрывают битумом или эпоксидными смолами).

Стальные сваи рекомендуется применять в сложных для забивки грунтовых условиях (включения валунов, гальки и т. д.), их также применяют в качестве ограждения.

- Железобетонные (получили наибольшее распространение в практике строительства).

Подразделяются по форме поперечного сечения, форме продольного сечения, способу армирования.

По способу армирования подразделяются на:


с ненапрягаемой арматурой и с предварительно напряженной продольной арматурой;
с поперечным армированием и без него.

По конструктивным особенностям железобетонные сваи подразделяются на цельные и составные.

- Комбинированные (составные по длине из двух различных материалов).

Комбинированные сваи в практике строительства применяются значительно реже, чем сваи других видов. Как правило, комбинированные сваи состоят из двух частей: нижней деревянной и верхней бетонной или железобетонной. Реже встречается комбинация: нижняя часть — деревянная, верхняя — металлическая.

Свая состоит из нижней деревянной части, погружаемой ниже горизонта грунтовых вод, и верхней железобетонной части. Соединение частей осуществляется с помощью штыря, заделанного в железобетонную часть; деревянная часть снабжена сверху стальным бугелем.

Добавлено через 19 часов 44 минуты
38. Защита подвальных помещений и фундаментов от подземных вод

Необходимость защиты фундаментов от подземных вод и сырости вызвана тем негативным воздействием, которое они оказывают на состояние строительных конструкций (появление на внутренней стороне стен сырости, плесени, отслоение краски, осыпание штукатурки, ухудшение санитарных условий подвала за счет повышенной влажности, сырость может по капиллярам конструкций распространиться и в нижние этажи зданий и т. д.).

Основными способами защиты заглубления помещений от вредного воздействия подземных вод и сырости являются:

отвод дождевых и талых вод;
устройство дренажей для осушения грунта;
применение гидроизоляции.

Выбор способа защиты зависит от топографических, гидрогеологических условий, сезонного колебания уровня грунтовых вод (в зависимости от количества выпадающих атмосферных осадков поверхность (уровень) грунтовых вод испытывает сезонные колебания: в сухое время года она понижается, во влажное – повышается, изменяются также дебит, химический состав и температура вод), а также от агрессивности вод, конструктивных особенностей заглубленных помещений.
Расчетный уровень грунтовых вод должен приниматься на 50-60 см выше весеннего уровня. Независимо от наличия грунтовых вод всегда следует затруднять доступ поверхностных вод к фундаментам и цоколю, устроив вокруг здания тротуар или отмостку.

Отвод дождевых и талых водвключает:

1. Вдоль наружных стен зданий обязательно устраивают отмостку с уклоном в сторону от сооружения.

2. Осуществляется вертикальная планировка территории застройки (придание местности определенных уклонов).
3. Устройство системы водоотливных канав, ливневой канализации и т. д.

Дренаж – система дрен и фильтров, которая служит для перехвата, сбора и отвода подземных вод от сооружения.

Дренажи могут устраиваться как для одного здания (кольцевой дренаж), так и для комплекса зданий (систематической дренаж), что более экономично за счет меньшей протяженности.

Виды дренажей:

траншейные;
закрытые беструбчатые;
закрытые трубчатые;
галерейного типа;
пластовый + пристенный.

Траншейные дренажи (открытые дренажи и канавы), являясь эффективным средством водопонижения (отвода вод), в то же время занимают большие площади, осложняют устройство транспортных коммуникаций и требуют больших затрат для поддержания их в рабочем состоянии.

Закрытый беструбчатый дренаж – траншея, заполненная фильтрующим материалом (гравий, щебень, камень) от дна до уровня подземных вод, предназначен для недолговременной эксплуатации (период работ по нулевому циклу).
Трубчатый дренаж – дырчатая труба (перфорированная) с обсыпкой песчано-гравийной смесью или с фильтровым покрытием из волокнистого материала.

Галерейный дренаж применяют при строительстве ответственных сооружений и там, где большой приток воды.

Пластовый дренаж – слой фильтрующего материала, уложенный под всем сооружением. Вода из него отводится с помощью обычных трубчатых дрен. Состоит, как правило, из двух слоев:

нижний (h ≥ 100 мм) – песок средней крупности;
верхний (h ≥ 150 мм) – щебень или гравий.
Часто при защите отдельных зданий пластовый дренаж сочетается с пристенным (сопутствующим) дренажом – вертикальный слой из проницаемого материала, устраиваемый с наружной стороны фундамента и заглубляемый ниже его подошвы. При неглубоком залегании водоупора и слоистом основании иногда достаточно устройства только одного пристенного дренажа.

Собираемые воды отводятся и сбрасываются в водоемы, дождевую канализацию или другие специальные места.

Гидроизоляция предназначена для обеспечения водонепроницаемости сооружений (антифильтрационная гидроизоляция), а также защиты от коррозии и разрушения материалов фундаментов при физической или химической агрессивности подземных вод (антикоррозионная гидроизоляция).

1) Простейший случай гидроизоляции – защита от капиллярной влаги. Для этого на высоте 15–20 см от верха отмостки по выровненной горизонтальной поверхности стен устраивают непрерывную водонепроницаемую прослойку из 1–2 слоев рулонного материала на битумной мастике.
2) Если уровень грунтовых вод находится ниже пола подвала, то для защиты фундаментов применяют изоляцию от сырости. Для этого с наружной поверхности заглубленных стен осуществляется обмазка горячим битумом за 1–2 раза и прокладываются рулонная изоляция в стене на уровне ниже пола подвала.

3) Если уровень грунтовых вод выше отметки пола подвала, то гидроизоляцию осуществляют в виде сплошной оболочки, защищающей заглубленное помещение снизу и по бокам. Выполняется такая изоляция (оклеичная гидроизоляция) из рулонных материалов с негниющей основой (гидроизол, стеклорубероид, металлоизол, толь и т. д.).
Вертикальная гидроизоляция наклеивается, как правило, с наружной стороны фундамента, т. к. в этом случае под действием напора подземных вод изоляция просто прижимается к изолируемой поверхности.

Для предохранения изоляции от механических воздействий (например, при обратной засыпке) снаружи ее ограждают защитной стенкой из кирпича, бетона или блоков. Зазор между стенкой и гидроизоляцией заполняют жидким цементным раствором.
Горизонтальная гидроизоляция наклеивается на выровненную цементной стяжкой поверхность и защищается сверху цементным или асфальтовым слоем в 3-5 см толщиной.

Гидростатическое давление воды при уровне грунтовых вод до 0,5 м выше пола подвала компенсируется весом конструкции пола. Если уровень грунтовых вод выше отметки пола подвала более чем на 0,5 м, то применяют специальные конструкции (заделанные в стены ж/б плиты, специальные плиты с упорами в стены здания и т. д.). В любом случае гидроизоляция должна устраиваться на высоту, превышающую максимальную отметку уровня грунтовых вод на 0,5 м.
4. При слабоагрессивных водах в качестве гидроизоляции делают глиняный замок из хорошо перемятой и плотноутрамбованной глины по всей высоте защитной стенки и с боков фундаментов.
При более агрессивных водах до устройства глиняного замка поверхность защитной стенки и фундаментов покрывают за 2 раза битумной мастикой или оклеичной изоляцией из битумных рулонных материалов.

Снизу фундамента и под полом подвала изоляция имеет более сложную конструкцию.

Наряду с антикоррозионной изоляцией фундаменты защищают за счет применения более стойких к данному виду агрессивности цементов (сульфатостойкие и др.), а также плотных бетонов.

Добавлено через 20 часов 6 минут
42. Основные положения и особенности проектирования фундаментов для сейсмических районов

10.4.1. Общие сведения о сейсмических воздействиях


Сейсмическая активность проявляется на обширной части РФ. Общая площадь районов, подверженных землетрясениям, составляет около 28 % территории страны.

Подавляющее большинство землетрясений возникает в результате тектонических процессов. Такие землетрясения наиболее часты (90 % всех землетрясений) и достигают значительной силы. Происходящие вблизи действующих вулканов землетрясения охватывают небольшие территории, они намного слабее тектонических. Еще меньшей силой обладают местные землетрясения, возникающие в результате горных обвалов, оползней, провалов карстовых полостей, шахтных и других выработок.

Землетрясения возникают, как правило, в определенных зонах (сейсмических), где продолжаются горообразовательные процессы. В таких зонах земная кора расчленена тектоническими разломами на отдельные массивы, испытывающие интенсивные взаимные смещения.

Находящаяся в глубине область нарушения земной коры является очагом (гипоцентром) землетрясения. Проекция очага на поверхность земли называется эпицентром землетрясения. Очаги обычно имеют вытянутую вдоль разломов форму. Их размеры изменяются от нескольких метров до десятков километров и в основном предопределяют силу землетрясения. При разрушительных землетрясениях очаги в большинстве случаев располагаются в толще земной коры на глубине 10-50 км и более.

В районе землетрясения каждая точка земли испытывает последовательное воздействие волн разного вида, поэтому колебания грунта при землетрясениях носят сложный пространственный характер. Из-за этого сейсмические силы могут иметь любое направление в пространстве и к тому же быть переменными по направлению, скорости и величине.

Продолжительность сейсмического импульса и вызываемых им колебаний грунта измеряется десятками секунд, а иногда несколькими минутами. Наиболее опасное воздействие землетрясения происходит в первые 20-40 с, чаще всего с первым мощным импульсом и следующим за ним сейсмическим колебанием грунта.

Для обеспечения достаточной надежности зданий и сооружений, возводимых в сейсмических районах, прежде всего необходимо знать силу землетрясения, которую обычно оценивают по общему разрушительному эффекту.

Известно много сейсмических шкал, предложенных в разных странах и в разные годы. В СССР с 1952 г. принята 12-балльная сейсмическая шкала (ГОСТ 6249-52). В качестве классификационных признаков для оценки силы землетрясения в ней приняты: степень повреждения и число поврежденных зданий разных типов; остаточные явления в грунтах и изменение режима подземных вод; прочие признаки (поведение домашних животных, ощущения людей). Кроме этого, каждый балл землетрясения характеризуют определенным диапазоном относительных смещений маятника стандартного сейсмометра и соответствующим ускорением смещения грунта.

С инженерной точки зрения к сейсмическим районам относят районы с силой землетрясения 6 баллов и выше. На территории России землетрясения 10 баллов и выше происходят крайне редко, поэтому в отечественном сейсмостойком строительстве учитывают землетрясения в диапазоне 6-9 баллов.

При характеристике степени повреждения и разрушения частей зданий под легкими повреждениями подразумевают тонкие трещины в штукатурке и т. д., под значительными повреждениями - трещины в штукатурке и откалывание ее кусков, тонкие трещины в стенах, повреждения дымовых труб отопительных печей и т. п., под разрушениями - большие трещины в стенах, расслоение каменной кладки, обрушение отдельных участков стен, падение карнизов и парапетов, обвалы штукатурки, падение дымовых труб отопительных печей и т. п., под обвалами - полное или частичное обрушение стен, перекрытий и т. д.
Здания и сооружения, расположенные в сейсмических районах, подвергаются во время землетрясений воздействию особых факторов, приводящих к появлению дополнительных усилий в конструкции и к изменению условий ее работы. Совокупность этих факторов, вызывающих повреждения сооружений, называют сейсмическим воздействием.

Повреждения дорог и дорожных сооружений наблюдаются при силе землетрясения 7 баллов и выше.

Ликвидация сейсмических повреждений земляного полотна, верхнего строения пути или покрытия производится сравнительно простыми техническими средствами и восстановление этих элементов дорог не требует длительного времени. Повреждения мостов и тоннелей приводят к продолжительным перерывам в движении, т. к. их восстановление связано с необходимостью выполнения длительных и трудоемких работ. По этой причине в нормах сейсмостойкого строительства многих стран для мостов и некоторых других дорожных сооружений предусмотрены повышенные гарантии сейсмостойкости.

Анализ последствий землетрясений показывает, что повреждения мостов происходят вследствие смещения или повреждения пролетных строений либо повреждения опор или же тех и других одновременно. Повреждения опор мостов можно подразделить на две группы: перемещения опор относительно первоначального положения (сдвиги, осадки, наклоны, опрокидывание); нарушения целостности конструкции опор (трещины, разломы, раскрытие швов и т. д.). Повреждения обоих видов нередко возникают одновременно.

Наиболее характерным повреждением устоев является их скольжение (сдвиг) в сторону пролета, часто сопровождаемое их наклоном и осадкой. Такие повреждения весьма распространены, особенно при наличии вокруг фундаментов устоев слабых глинистых грунтов; в единичных случаях деформации устоев могут происходить при землетрясениях силой от 7 баллов. Повреждения устоев являются следствием воздействия увеличившегося давления на них грунта со стороны насыпи, инерционных сил от пролетных строений и самих устоев, а иногда и в результате скольжения наклонно залегающих пластов берегового массива в сторону водотока. Перемещения устоев в сторону пролета часто бывают значительными и могут привести к полному разрушению мостов.

Характерными повреждениями промежуточных опор являются их осадки и наклоны, а иногда горизонтальные перемещения. Отмечены случаи поднятия опор относительно первоначального положения, а также их поворота в горизонтальной плоскости. Осадки и наклоны опор в большинстве случаев наблюдаются при ФМЗ, а также фундаментах из висячих свай, заглубленных в мелкие или пылеватые водонасыщенные пески средней плотности сложения, текучепластичные и текучие супеси, суглинки и глины. При землетрясении 9 баллов деформации опор достигают больших величин и являются массовыми. Установлено, что в общем случае осадки и наклоны опор уменьшаются с увеличением глубины заложения фундаментов и размеров их подошвы.

В результате землетрясения 1923 г. в Японии опоры одного моста с фундаментами мелкого заложения на песке осели на 0,5-1,5 м. При том же землетрясении отмечены осадки фундаментов из висячих деревянных свай до 1,2 м.
В безростверковых опорах при землетрясении возникают трещины в ригелях и местах примыкания стоек к ригелю. В свайных фундаментах с высоким ростверком возникают повреждения в виде горизонтальных или косых трещин в сваях; вблизи заделки свай в ростверк раздробляется бетон, выпучиваются сжатые стержни арматуры.

Анализ характера сейсмических повреждений мостов показывает, что они являются следствием воздействия комплекса факторов, из которых наиболее важны следующие:

горизонтальные силы инерции (сейсмические силы), возникающие при колебательных движениях масс сооружения под воздействием колебаний грунтового основания. Эти силы в большинстве случаев считаются основной причиной повреждения сооружений;
вертикальные силы инерции (сейсмические силы), вызванные вертикальной составляющей сейсмических колебаний грунта. Эти силы незначительны по сравнению с основными вертикальными нагрузками сооружения, поэтому редко являются непосредственной причиной повреждения сооружений. Однако такие силы уменьшают запасы устойчивости фундаментов опор против сдвига и опрокидывания;
сейсмическое горизонтальное давление грунта на устои мостов;
сейсмическое (гидродинамическое) давление воды на промежуточные опоры мостов;
значительное снижение несущей способности грунтов, особенно водонасыщенных рыхлых песков и текучих и текуче-пластичных глинистых грунтов. Из-за этого происходят большие осадки и наклоны опор мостов;
остаточные деформации природного рельефа в виде оползней, обвалов и т. п.;
смещения по плоскостям тектонических нарушений, приводящие к образованию сбросов и сдвигов.

Следует отметить, что большей частью повреждение сооружений происходит в результате одновременного воздействия нескольких из перечисленных причин.

10.4.2. Особенности конструирования и расчета фундаментов в сейсмических районах

Основания и фундаменты мостов в сейсмических районах проектируют, руководствуясь указаниями СНиП II-7-81, СНиП 2.02.03-85, СНиП II-18-76. Наибольшая вероятная сила землетрясения в районе или в местах возведения любых зданий и сооружений, включая мосты, выраженная в баллах, принимается по приведенным в СНиП II-7-81 картам сейсмического районирования территории РФ или списку основных населенных пунктов РФ, расположенных в сейсмических районах. Указанная на картах сейсмичность относится к равнинным участкам со средними геологическими условиями, характеризуемыми залеганием с поверхности большой толщи слабовлажных суглинков и низким (глубже 10 м от естественной поверхности грунта) уровнем подземных вод.

После определения сейсмичности района строительства по картам сейсмического районирования или списку населенных пунктов устанавливают на основе карт сейсмического микрорайонирования или по материалам общих инженерно-геологических изысканий уточненную сейсмичность площадки строительства. Сейсмичность площадки строительства принимают, как правило, единой на всем ее протяжении. Однако в некоторых случаях инженерно-геологические условия площадки могут резко различаться по длине сооружения. Например, условия в русле реки отличаются от условий на ее берегах. В таких случаях сооружение следует проектировать с учетом более сильного сейсмического воздействия.

Принятая сейсмичность площадки строительства характеризует максимальную силу возможного землетрясения в ее пределах независимо от назначения и степени ответственности сооружения. Однако экономически неоправданно в условиях одинаковой сейсмичности проектировать разные здания и сооружения в расчете на землетрясения одной и той же силы. Очевидно, степень гарантии безопасности зданий и сооружений должна зависеть от их назначения, капитальности, срока надежной эксплуатации, опасности последствий разрушения и размера вызванных этим убытков. Для возможности учета этих требований в действующих нормах введено понятие расчетной сейсмичности сооружения, или, кратко, расчетной сейсмичности.

В обеспечении сейсмостойкости фундаментов первостепенное значение имеет правильный выбор несущего пласта грунтов. Наилучшими грунтами несущего пласта считаются скальные, крупнообломочные и песчаные грунты, твердые и полутвердые глины, а также любые вечномерзлые грунты, используемые по принципу I. Такие грунты мало изменяют показатели своих механических свойств при сейсмическом воздействии как в условиях отсутствия воды, так и при ее наличии.

Водонасыщенные рыхлые, а также средней плотности сложения пески при совместном воздействии нагрузки от сооружения и землетрясения легко уплотняются из-за перехода их частиц из неустойчивого равновесия в более устойчивое. При этом, а также вследствие уменьшения трения между частицами они сближаются, вытесняя воду из пор. Отжимаемая из пор вода стремится уйти в сторону наименьшего сопротивления, увлекая за собой частицы грунта, в результате чего происходит разжижение песков, а иногда и их выпор с потерей устойчивости основания. Внезапное разжижение водонасыщенных песков бывает крайне редко. Однако известны случаи, приводившие к полному разрушению мостов, зданий и сооружений.

Разрушаются подтопленные песчаные насыпи, когда происходит внезапное разжижение грунта, например, под влиянием сотрясений от проходившего поезда, производства поблизости взрывных работ или других аналогичных причин.

Особенно неблагоприятны для оснований намытые под водой пески или насыпные грунты ввиду их высокой пористости.

Повышение плотности сложения песков при сейсмическом воздействии приводит к значительным не предусмотренным в проектах мостов осадкам основания фундамента, а иногда к появлению сил негативного трения по боковой поверхности фундаментов, создающих дополнительную, не учитываемую в расчетах, нагрузку на основание.

Глинистые грунты при сейсмическом воздействии уплотняются значительно меньше, чем песчаные, т. к. отжатие воды из пор между глинистыми частицами происходит медленнее, чем у песков.

С увеличением размера поперечного сечения свай затрудняется возможность вдавливания (внедрения) их низа в несущий пласт, особенно если он состоит из водонасыщенных средней плотности сложения песков или туго-пластичных глинистых грунтов, поэтому при равных условиях для фундаментов на таких грунтах предпочтительнее оболочки либо столбы с уширенной пятой или без нее.

Под воздействием сейсмической силы происходит отлипание (отслаивание) грунта от боковой поверхности фундаментов или элементов на некоторую глубину от поверхности грунта, причем тем большую, чем меньше их гибкость и выше сейсмичность. Вследствие отлипания грунта в пределах верхней части элементов или фундаментов исключаются силы трения грунта об их боковую поверхность.

С увеличением глубины повышается природная плотность сложения грунтов и существенно затухают силы сейсмического воздействия, поэтому при увеличении глубины заложения фундаментов при прочих равных условиях повышается их сейсмостойкость.

Добавлено через 20 часов 14 минут
20. Условия работы свай-стоек и висящих свай

В зависимости от характера передачи нагрузки на грунт сваи подразделяются на:

сваи-стойки;
висячие сваи (сваи трения).

К сваям-стойкам относятся сваи, прорезающие толщу слабых грунтов и опирающиеся на практически несжимаемые или малосжимаемые грунты (крупнообломочные грунты с песчаным наполнителем, глины твердой консистенции). Такие сваи практически всю нагрузку передают через нижний конец, т. к. при их малых вертикальных перемещениях не возникают условия для возникновения сил трения на ее боковой поверхности.6

Свая-стойка работает как сжатый стержень в упругой среде, ее несущая способность определяется или прочностью материала, или сопротивлением грунта под ее нижним концом:

Fd=Rs,

где

Fd – несущая способность сваи;

Rs – расчетное сопротивление грунта под нижним концом сваи, кПа.

К висячим сваям относятся сваи, опирающиеся на сжимаемые грунты. Под действием продольной силы N свая получает перемещение (дает осадку), достаточное для возникновения сил трения между боковой поверхностью сваи и грунтом. В результате нагрузка на основание передается как боковой поверхностью, так и нижним концом сваи. Несущая способность такой сваи определяется суммой сопротивления сил трения по ее боковой поверхности и грунта под острием:

Fd=Rf+Rs,

где

Rf – расчетное сопротивление грунта по боковой поверхности сваи.

Последний раз редактировалось Маргошик; 16.06.2016 в 17:58. Причина: Добавлено сообщение
Маргошик вне форума   Ответить с цитированием
2 пользователя(ей) сказали cпасибо: